
Front. Comput. Sci.

DOI 10.1007/s11704-016-6125-y

A survey of network update in SDN

Dan LI 1, Songtao WANG1, Konglin ZHU1,2, Shutao XIA1

1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,

Beijing 100876, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Network is dynamic and requires update in the

operation. However, many confusions and problems can be

caused by careless schedule in the update process. Although

the problem has been investigated for many years in tradi-

tional networks where the control plane is distributed, soft-

ware defined networking (SDN) brings new opportunities and

solutions to this problem by the separation of control and data

plane, as well as the centralized control. This paper makes a

survey on the problems caused by network update, includ-

ing forwarding loop, forwarding black hole, link congestion,

network policy violation, etc., as well as the state-of-the-art

SDN solutions to these problems. Furthermore, we summa-

rize the network configuration strength and discuss the open

issues of network update in the SDN paradigm.

Keywords software defined network, network update, for-

warding loop, forwarding black hole, link congestion, net-

work policy violation

1 Introduction

Networks are not working statically. In order to keep network

in a correct and efficient state, network operators need to ad-

just link weights, change traffic engineering (TE) schemes,

migrate virtual machines and update routing policies, etc. All

these actions are known as network updates, which require

Received February 29, 2016; accepted May 4, 2016

E-mail: tolidan@tsinghua.edu.cn; wangst12@mails.tsinghua.edu.cn;
klzhu@bupt.edu.cn; xiast@sz.tsinghua.edu.cn

careful arrangement to avoid problems like forwarding loops,

forwarding black holes, link congestions and network policy

violations that may occur during the updating process. In-

deed, the impact of network update is not trivial. It shows

that about 20% network faults come from carelessly planned

network update [1]. Moreover, the network updating period

is not short, and network problems may occur during this up-

date period. For instance, it showed that 30% packets suffer

from loss for more than two minutes after BGP updating [2].

Neglecting the problems during the network update process is

indispensable for network operators as customers’ demands

become more and more critical. Delay sensitive applications

such as financial trade, online shopping and searching cannot

tolerate any network fault that affects the quality of service

(QoS) of the network. For instance, Amazon would lose 1%

of the amount of sales for every 100ms of latency1) ; while

Google reported that 20% of traffic would drop for more than

500ms of search page response time.

In traditional networks where the control plane is dis-

tributed and binding together with data plane, many research

efforts are spent in solving the network update problem. A

straightforward idea is to reduce the convergence time of a

protocol [3,4]. However, it is difficult to design a routing pro-

tocol with fast-enough convergent time considering the huge

size of the Internet. Further, the innovation of new protocols

should not be limited by the convergent time restriction [5].

As a result, many recent works turn attention to how to elim-

inate the problems during the updating process on plan, in-

stead of mitigating them [6–9]. Greenburg et al. argued that in

1) T. Hoff. Latency is everywhere and it costs you sales — how to crush it. http://highscalability.com/blog/2009/7/25/latency-is-everywhere-andit-costs-you-
sales-how-to-crush-it.html



2 Front. Comput. Sci.

traditional networks, the forwarding decisions are made in a

distributed manner, and besides forwarding function the data

plane also undertakes functions like “tunneling, access con-

trol, address translation and queuing” [10]. From the perspec-

tive of network update, the updating schedule produced in a

distributed way that can only generate locally optimized so-

lutions and incoordination between routers make update full

of faults. A rich number of management functions make it

even worse because not only routing but also access control

and address translation are influenced by update.

Nowadays, more and more network operators are accept-

ing software defined network (SDN) to manage their net-

works. For instance, Stanford university has deployed open-

flow, a representative of SDN in the campus [11]. Google,

Microsoft and a growing number of enterprise operators are

deploying SDN in their data center networks respectively

[12,13]. Thanks to the separation of control and data plane,

SDN enables new solutions to the network update problem.

The data plane only needs to forward packets, and all the

decisions like routing, load balancing and traffic engineer-

ing are made in a logically centralized controller in SDN.

Take openflow as an example. The control plane in open-

flow can configure data plane at flow granularity which is

more precise and flexible than IP prefix matching in tradi-

tional networks. The control plane keeps a global view of the

network and makes comprehensive forwarding decisions for

each flow. SDN operators are thus able to update the network

in a finer grained manner and provide high level schedules

that update the whole network. Catching up with the trend

of SDN, there is growing interest in the community to design

new solutions to the network update problem. However, SDN

switches still forward packets based on their own forward-

ing tables, thus operators need to carefully design the update

mechanisms and distribute the rules to every SDN switch.

In this paper, we summarily describe the problems caused

by network update as well as the solutions in a SDN

paradigm. In particular, we discuss four basic confusions oc-

curred during the network updating process, such as forward-

ing black hole, forwarding loop, link congestion and net-

work policy violation. We then study the solutions to the

confusions and discuss the constraints for network updating

scheduling. We also carry out the discussion about the diffi-

culties for solving different confusions. Finally, we propose

the future open issues for network updating in the paradigm

of SDN. We hope this paper can help readers have a more

clear view of this problem and foster more research on this

issue. The rest of this paper is organized as follows. Section 2

discusses the problems caused by network updating. Section

3 presents the current solution to SDN update in the literature.

Section 4 discusses more issues in this problem and proposes

open challenges in the network update. Section 5 concludes

the paper.

2 Problems of network update

Network update problem refers to network confusions caused

by careless updating schemes. Network update we mention

in this paper is not a mechanism that corrects network be-

havior, but the change of network state managed by network

operators. Actually, there have been a bunch of solutions for

network static state verification [14–17], but we focus on the

confusions caused by network updates. There are a list of net-

work confusions that may occur during different network up-

date scenarios shown in Table 1. It appears that forwarding

black hole, forwarding loop, link congestion, network policy

violation, etc. are in the scenarios such as updating forward-

ing policy, changing access list of a firewall, VM migration

in Data Center and adjusting traffic engineering scheme. Ac-

cording to the table, it shows that majority of network update

problems are caused by four basic confusions: forwarding

black hole, forwarding loop, link congestion, and network

policy violation. We will explain each of them in the follow-

ing of this section.

Table 1 Some scenarios of network update and corresponding confusions

Scenario Confusion

Update forwarding policy forwarding loop, forwarding black
hole, link congestion, network policy
violation

Change access list of a firewall network policy violation

VM migration in Data Center forwarding black hole, link congestion

Adjust traffic engineering scheme link congestion

• Forwarding black hole

The forwarding black hole confusion refers to the case that

a packet entering an SDN switch cannot match any rule in the

forwarding table during the network updating process. We il-

lustrate this confusion by an example in Fig. 1. The update

scheme is to change the path from node A to node C. The

path in Fig. 1(a) is the initial state and the path in Fig. 1(b)

is the final state. The controller’s instruction is that: node A

replaces an old forwarding rule with a new one and node B

deletes the old rule. Since the reaching times for commands

from the controller to node A and node B are different, a case

in Fig. 1(c) may occur. In this case, node B deletes its rule

first, but node A has not replaced the rule. Packets arriving

at node B will be sent to controller or in worse case will be



Dan LI et al. A survey of network update in SDN 3

discarded by node B. Node B is a forwarding black hole for

packets whose destination is node C until A has updated its

forwarding table.

Fig. 1 An example of forwarding black hole confusion during network up-
date

• Forwarding loop

The forwarding loop confusion refers to the case that a

packet suffers from forwarding loops and cannot be delivered

to its destination during network update. We illustrate this

confusion by an example in Fig. 2. There are four switches

named A, B, C and D. The arrow lines compose a tree rooted

at D which represent the routing paths from the other three

nodes. The update scheme is to convert the tree in Fig. 2(a)

to Fig. 2(b). Node C has changed its forwarding table in

Fig. 2(c), but neither A nor B can finish this. Thus a loop ap-

pears, which means that during this period network is incon-

sistent. After that in Fig. 2(d), node B updates its forwarding

table but A does not. The bad loop does not vanish until node

A finishes updating. C-B-A is the worst update scheme in

this case. Because the latency between control plane and for-

warding plane varies with respect to different switches, any

updating sequence may be possible if the control plane dis-

tributes update schemes to A, B and C at the same time. For

the same reason, it is impossible to update all the switches in

one instance.

Fig. 2 An example of forwarding loop confusion during network update

• Link congestion

The link congestion refers to the situation that link is con-

gested by flows during the network update process. An exam-

ple of the link congestion confusion is shown in Fig. 3. Links

are bidirectional and there are three flows in the network. We

assume that the capacity of each link for single direction is

10 units, and the sizes of Flow1, Flow2 and Flow3 are all 5

units. A network administrator wants to change the traffic pat-

tern from Fig. 3(a) to Fig. 3(b). A careless update scheme is

to update Flow1 first. The result is shown in Fig. 3(c). A con-

gestion takes place on link BD which bears 15 units of traffic.

On the contrary, Fig. 3(d) is a well planned update scheme

which puts Flow3 as the first update flow. In this case, no

congestion will take place.

Fig. 3 An example of link congestion confusion during network update

• Network policy violation

Middleboxes (e.g., Firewall, NAT, and Proxy) are widely

deployed in modern networks [18]. Packets have to follow

network policies which enforce packets going through a list

of middleboxes. During the network policy update, packets

may violate the policies. Such confusion is known as network

policy violation. We illustrate this confusion with the help

of an example in Fig. 4. In the figure, all the traffic should

go through a network address translator (NAT) which con-

verts private IP address to public IP address in the packet

header. Meanwhile, the traffic with prefix 234.234.234.x/24

should be inspected by a firewall (FW) which blocks the In-

ternet visit from Host1. According to the policy, traffic from

Host1 goes through the path of “SW1-NAT-SW1-SW2-FW”,

and traffic from Host2 goes through the path of “SW1-NAT-

SW1-SW3-Internet”. For some reasons, a network adminis-

trator changes IP mapping in the NAT. He maps 192.168.0.3



4 Front. Comput. Sci.

to 234.234.234.4 and 192.168.0.4 to 234.234.234.5, respec-

tively (the original map is 192.168.0.3 to 234.234.234.3 and

192.168.0.4 to 234.234.234.4, as shown in Fig. 4). Thus

traffics from Host1 and Host2 both go through the path of

“SW1-NAT-SW1-SW2-FW-Internet”. As a result, Host1 con-

tacts the Internet now, which violates the network policy that

Host1 cannot contact the Internet; meanwhile, traffic from

Host2 also have to go through FW, which increases the load

of FW.

Fig. 4 An example of network policy violation confusion during network
update

3 SDN solutions to network update

In this section, we firstly illustrate solutions to the four ba-

sic confusions discussed above. Then we will discuss three

limitations that will affect performance of network update

scheduling.

3.1 Solution to forwarding black hole

The forwarding black hole results from the reason that there

is no forwarding rule matching the packet. Mahajan and Wat-

tenhofer propose a solution to this confusion as “add be-

fore remove” in Ref. [19]. The scheme suggests that switches

should update new rules first before removing old rules. Then

Reitblatt et al. [20] implement a more generous version of

“add before remove” on the whole network to solve the for-

warding black hole confusion. We illustrate the solution of

[20] by an example shown in Fig. 5. In the example, each

packet is stamped with a version number k and forwarded

through the network. When the update process starts, new

rules with version number k + 1 are distributed to switches,

while the switches still keep old rules with version number

k. After confirming that all switches have received the new

rules, controller informs switches of stamping new packets

injecting into the network with new version number k + 1.

Then all switches wait for a time during which all packets

with version number k should have left the network. After

that, switches could remove old rules with version k. Be-

cause switches keep both old and new rules in forwarding ta-

bles during update process, there will be no forwarding black

holes.

Fig. 5 An example solution to forwarding black hole confusion during net-
work update

Indeed, Reitblatt’s solution is a stricter “add before re-

move”. “Add before remove” operation on a single switch

is enough to ensure forwarding black hole free. Reitblatt’s

solution enforces all switches in the network adding new

rules before removing old rules. This creates a new consistent

property called “per-packet consistency”. “Per-packet consis-

tency” means that a packet goes through the network accord-

ing to either old rules or new rules but never a mix of them.

This is a stronger consistent property than forwarding black

hole free. We call it stronger because a “Per-packet consis-

tency” network update scheduling can keep more consistent

properties than only keep forwarding black hole free.

3.2 Solution to forwarding loop

In order to solve forwarding loop confusion, we need to avoid

the existence of the loop during the update process. We have

mentioned that “per-packet consistency” by Reitblatt’s solu-

tion [20] is a strong consistent property in last subsection.

Indeed, such “per-packet consistency” not only keeps the

forwarding black hole free but also holds forwarding loop

free. Take update scheduling in Fig. 2 as an example, in Re-

itblatt’s solution, the data plane keeps both the forwarding

rules shown in Fig. 2(a) and the forwarding rules shown in

Fig. 2(b) at the same time during update. A packet is for-

warded along either the path shown in Fig. 2(a) or the path

shown in Fig. 2(b) but never a mix of the them.

However, Mahajan and Wattenhofer point out that Reit-

blatt’s solution is too strong for forwarding loop free prop-

erty [19]. They show that a careful mix of the old rule and

new rule could hold forwarding-loop free property. With the

help of the example in Fig. 6, we illustrate Mahajan and Wat-

tenhofer’s solution to forwarding loop confusion. Fig. 6(a)



Dan LI et al. A survey of network update in SDN 5

shows the forwarding path to node D before network updat-

ing and Fig. 6(d) shows the forwarding path to node D after

network updating. All subfigures (a)–(d) in Fig. 6 in sequence

indicate the update schedule according to Mahajan and Wat-

tenhofer’s solution. The update sequence is A-C-B. This up-

date schedule is based on a dependency tree. The dependency

tree is constructed based on the forwarding path to node D

after update shown in Fig. 6(d) according to principles: des-

tination node D is the root of the dependency tree; node A

is the child of node D and node B and node C are children

of node A, resulting from node D is the next hop for node A

and node A is the next hop for node B and C, as shown in Fig.

6(d). After building up the dependency tree, the updating rule

will be scheduled as updating the root first, and then update

children of each node in sequence following the seemingly

breadth first search (BFS) rule.

Fig. 6 An example solution to forwarding loop confusion during network
update

3.3 Solution to link congestion

The link congestion confusion is caused by the overloading

of link during the update process. Microsoft demonstrates

their inter-data center network solution to link congestion

SWAN [13] in 2013. The main purpose of SWAN is to highly

utilize the network capacity even the traffic volume varies

significantly by time. SWAN leaves “scratch capacity” on

links. “Scratch capacity” will not be used until updating, and

it proves that when setting “scratch capacity” as s, update

could be finished in 1/s − 1 steps without congestion. Idea

of this mechanism is similar to that of ICU [21]. They both

trade updating time with scarce resource which in SWAN is

link capacity and in ICU [21] is TCAM. zUpdate [22] by

Liu et al. aims to eliminate congestion in data center up-

dating progress. They point out that in data centers switches

utilize equal cost multipath routing (ECMP) to split traffic

evenly among all next hops to make fully use of the redundant

paths [22]. If one link fails, traffic on this link is evenly split

to the remaining links which may cause congestion. zUpdate

breaks the fairness among multiple paths and split effected

traffic on each path carefully when failure happens. Like [20],

optimization programming model in zUpdate only requires

operator to provide final configuration without paying atten-

tion to update details.

3.4 Solution to network policy violation

The origin of network policy violation is that a packet can-

not be matched with its original address. Fayazbakhsh et al.

point out that the key to solving network policy violation con-

fusion is “OriginBinding” [23]. They design a “FlowTags”

mechanism for “OriginBinding” as shown in Fig. 7. The NAT

adds tags to packets and sends the mapping between original

IP and tag to controller. Switches forward packets accord-

ing to tags in packet header. The FW consumes tags. Also,

They compare tags with the mapping received from the con-

troller and find out the original IP of packets, so that no matter

how many times a packet have been edited, middleboxes and

switches could always map it with its original IP. For middle-

box update process, a middlebox can change its configuration

rules without worrying about the impact to downstream mid-

dleboxes. In such a manner, network policy always holds for

every packet.

Fig. 7 An example solution to network policy violation confusion during
network update

Fayazbakhsh’s solution helps switches to “OriginBind” a

packet with its original IP address, but there is still a problem

that may violet security polity. In a case which is similar to

Fig. 7, Host1 is multihoming to SW3. Therefore, flows from

Host1 may visit Internet through SW3. How can we let flows

from Host1 go back to SW2 and blocked by the FW? Solu-

tion to the problem is called waypoint enforcement provided

by Ludwig et al. [24]. In this case, SW2 is the waypoint that



6 Front. Comput. Sci.

every flow from Host1 must go through. Ludwig’s solution

could guarantee that during update or any cases, flows will

always travel through the selected way point and therefore

security policy is hold.

3.5 Constraints of network update scheduling

Besides the solutions to basic confusions, there are sev-

eral studies investigating the constraints of network update

scheduling. In this paper, we mainly focus on three types of

constraints: memory constraint, update efficiency and cus-

tomizable consistency properties.

1) Memory constraint As TCAM is the most crucial mem-

ory resource for switches, too much TCAM consumption

caused by updating mechanism may result in the inefficiency

of network management. Reitblatt’s solution is an effective

but inefficient updating mechanism which consumes 50% of

TCAM capacity more. Therefore, some researches focus on

releasing the over consumed memory. McGeer [25] tries to

use SDN controller as a cache during update process. As

shown in Fig. 8, packets affected by the update process are

all sent to the controller. After update process, these packets

are sent back to network for further forwarding. The solu-

tion consumes no additional memory but leaves pressure to

controller and the channel between controller and switches.

During update, huge amount of traffic will congest the pre-

cious channel between controller and switches (e.g., Open-

flow channel). This is a disaster for network management for

Fig. 8 Mechanism of McGeer’s network update schedule

the reason that fraction of configuration command may get

lost. McGeer admits that the solution can only be deployed

in very special cases. Katta’s solution [21] is to incrementally

update forwarding entries in switches. In each round, a frac-

tion of rules are updated. The memory overhead is tunable.

The less memory overhead the more rounds to update. If the

traffic pattern follows Zipf�s law (an exponentially decaying

distribution), then “80% of traffic could be updated in the first

round and 99% of traffic could be updated after three rounds

which is acceptable in real network environment [21].”

2) Update efficiency Update efficiency is critical, as the care-

less and slow update may result in the chaos of network be-

haviors. Jin et al. find that the network updating efficiency is

quite low [26]. They find a way to speed up this process of

keeping link congestion free. We use the updating example

as shown in Fig. 9 to explain the scheme. Figure 10 is the

dependency graph of this updating scheme, which illustrates

how the scheme updates the network. Rectangle represents

available resource on nodes and links. For example “SD:50”

means 50 units of space are available in node D, and “SC-

SD:5” means 5 units of space are available on link between

node C and node D. Circle represents operation. For example,

circle A means add rule for Flow4 at node C. The detailed

illustration regarding operations is listed in Table 2. Trian-

gle represents the flaws on which the operations work. Arrow

line and the number next to it represents resource consumed

or released by the operation. For example arrow line between

“SC:50” and operation A with number “1” means operation

A consumes 1 unit of memory on SC. Arrow line between

operation F and “SB:50” with number “1” means operation

F will release 1 unit of resource to SB. Such a model lists all

resources remained and transformation of resources through

operations. Besides, Jin et al. develop an algorithm to find a

tree through all operations which obey resource limit. Result-

ing sequence of operations along the tree is the solution to

update network efficiently. The approaches which are classi-

fied as “update ordering” (another class is two phase update)

are all “trying” to find an order of rule update, but such an

order does not always exist. Foerster et al. in their work [27]

prove that for splittable flows, whether congestion free up-

date order exists can be verified in polynomial time. If such

an order does not exist, those “update ordering” approaches

may stuck in calculating the order.

Paris et al. [28] try to solve the fundamental problem of

online SDN controllers to decide when to perform flow re-

configurations for efficiently network updating. They formu-

late a stochastic optimization problem to minimize the actual

network cost by selecting the reconfiguration instances sub-



Dan LI et al. A survey of network update in SDN 7

ject to a time-average constraint on the frequency of network

reconfigurations, so that no more than one network reconfig-

urations occur per iteration of the solver.

Fig. 9 A scenario of network update efficiency

Fig. 10 Dependency graph of Fig. 9

Table 2 Operations in Fig. 9

Index Operation

A Add Flow4 at node C

B Add Flow4 at node D

C Change weight at node C

D Delete Flow3 at node D

E Delete Flow3 at node C

F Delete Flow3 at node B

3) Customizable consistency properties Network operators

desire a network updating mechanism that can satisfy with

customizable consistency properties. The network update is

to ensure customizable correctness properties as the network

evolves efficiently. However, due to the distributed nature of

networks, it may result in the uncertainty of network that the

network behavior deviates from desired properties as the in-

stilling of updates. Zhou et al. propose a general algorithm for

various consistency properties [29]. It introduces customiz-

able consistency generator (CCG) to achieve the customiz-

able network updates. In particular, the CCG collapses all

possible states onto one forwarding graph and orders the up-

dates into a queue and checks the safety of the queued up-

dates. A verification engine traverses on the forwarding graph

to ensure the correctness of the instilling updates. Then it con-

firms the updates with network model.

4 Discussion

Mahajan and Wattenhofer have revealed the relationship be-

tween the strength of consistent properties and dependency

structure in their work [19]. Their conclusion is that stronger

consistent properties require broader dependency structures

to hold consistency. We borrow the idea of Ref. [19] and draw

Table 3 filled with consistent properties and solutions that are

introduced in this paper. The first column of Table 3 lists con-

sistent properties in the order of strength and the first row of

Table 3 lists dependency structure in the order of scope. A

stronger consistent property requires a high level dependency

structure. For example, keeping forwarding black hole free

only requires “add before remove” operation on every single

switch or router, but keeping network policy violation free

requires coordination among all network facilities including

switches, routers and middleboxes. Impossible in the table

means that a consistent property can not be kept by a low

level dependency structure which has been proved in Ref.

[19]. For example, keeping forwarding loop free is impossi-

ble if update process on a single switch is carefully arranged.

It at least requires the coordination of all switches which are

on the downstream pathes of impacted packets.

Solutions in traditional networks mainly focus on for-

warding black hole confusion and forwarding loop confusion

[5–7,30]. From the information provided by Table 3, for-

warding black hole confusion and forwarding loop confusion

are weak consistent properties. The distribution character of

traditional network has limited innovation of better network

Table 3 Network configuration strength to insist specific consistent properties

Single

switch/router

Downstream

switches/routers
Global switches/routers

Global network

facilities

Forwarding black hole free [13,20–22,25,26] [23]

Forwarding loop free Impossible [19] [13,20–22,25,26] [23]

Per-packet consistency Impossible [20,21,25]

Link congestion free Impossible [13,22,26]

Network policy violation free [23]



8 Front. Comput. Sci.

update schedules aimed to hold stronger consistent proper-

ties. The separation of control and data plane, as well as the

centralized control, makes it possible to coordinate switches,

routers and even middleboxes in SDN. Keeping stronger

properties like link congestion free and network policy vi-

olation free is possible when scheduling network update.

All the works we present by far have a consensus that

atomic update does not exist because switches cannot up-

date at exactly the same time. Updating duration time and

controller response time vary a lot and are not predictable.

Therefore, update ordering and two phase updating are two

main research directions on network update problem. How-

ever, Mizrahi et al. in their work [31] show that accurate time

based update is possible. This is an exciting progress and may

make network update faster than ever.

Although researchers have paid a lot of efforts on network

updating problem, there are still open challenges need to be

addressed. Firstly, the state-of-the-arts for solving confusions

during network updates treat every flow equally. In reality,

some flows are more emergent than the others due to its upper

layer service. For example, the flows for live streaming are

more latency sensitive than the flows for email service. Up-

date strategy should consider these emergent flows first be-

fore those who are not sensitive to latency. Because SDN can

schedule each flow accurately, we think priority based flow

update mechanism will be a direction in the future research.

Secondly, papers aimed at congestion free consistency usu-

ally assume that link will not suffer from congestion. Such

assumption is hardly to hold in a busy network. Network up-

date method should be capable of reconfiguring under link

congestions meanwhile satisfying some consistencies (e.g.,

the network can update in the case of congestion, and conges-

tion should not exceed 10 percents of link capacity during the

update). Thirdly, as the scale of SDN keeps increasing, multi-

ple controllers proposal is suggested [32]. Scalability is non-

trivial for future development of SDN. SDN enables the ca-

pability of centralized network configuration that allows the

network operators to have more opportunities for solving the

above-mentioned network update issues.

5 Summary

Update schedule needs to be carefully treated, otherwise

confusions like forwarding loop, forwarding black hole, link

congestion, network policy violation will come out. We an-

alyze these confusions and solutions to them in this paper.

We find that more complex confusions can be solved with the

help of SDN and programable interfaces provided by these

solutions to help address the network update problem.

Acknowledgements The work was supported by the National Key Basic
Research Program of China (973 program) (2014CB347800), the National
Natural Science Foundation of China (Grant Nos. 61522205, 61432002,
61133006, and 61502045), the National High-tech R&D Program of China
(863 program) (2013AA013303, 2015AA01A705, and 2015AA016102),
EU FP7 Marie Curie Actions project Grant Agreement (the Cleansky
project) (607584), ZTE corporation and Tsinghua University Initiative Sci-
entific Research Program.

References

1. Markopoulou A, Iannaccone G, Bhattacharyya S, Chuah C N, Ganjali

Y, Diot C. Characterization of failures in an operational IP backbone

network. IEEE/ACM Transactions on Networking, 2008, 16(4): 749–

762

2. Labovitz C, Ahuja A, Bose A, Jahanian F. Delayed Internet rout-

ing convergence. IEEE/ACM Transactions on Networking, 2001, 9(3):

293–306

3. Pei D, Zhao X L, Wang L, Massey D, Mankin A, Su S F, Zhang L X.

Improving BGP convergence through consistency assertions. In: Pro-

ceedings of the 21st Annual Joint Conference of the IEEE Computer

and Communications Societies. 2002, 902-911

4. Siddiqi A, Nandy B. Improving network convergence time and network

stability of an OSPF-routed IP network. In: Proceedings of Interna-

tional Conference on Research in Networking. 2005, 469–485

5. Kushman N, Kandula S, Katabi D, Maggs B M. R-BGP: staying con-

nected in a connected world. In: Proceedings of Symposium on Net-

worked Systems Design and Implementation. 2007

6. Kushman N, Katabi D, Wroclawski J. A Consistency Management

Layer for Inter-Domain Routing. Technical Report. 2006

7. Francois P, Shand M, Bonaventure O. Disruption free topology recon-

figuration in OSPF networks. In: Proceedings of the 26th IEEE Inter-

national Conference on Computer Communications. 2007, 89–97

8. Raza S, Zhu Y, Chuah C N. Graceful network state migrations.

IEEE/ACM Transactions on Networking, 2011, 19(4): 1097–1110

9. Vanbever L, Vissicchio S, Pelsser C, Francois P, Bonaventure O. Seam-

less network-wide IGP migrations. ACM SIGCOMM Computer Com-

munication Review, 2011, 41(4): 314–325

10. Greenberg A, Hjalmtysson G, Maltz D A, Myers A, Rexford J, Xie

G, Yan H, Zhan J B, Zhang H. A clean slate 4D approach to network

control and management. ACM SIGCOMM Computer Communica-

tion Review, 2005, 35(5): 41–54

11. Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L,

Rexford J, Shenker S, Turner J. OpenFlow: enabling innovation in

campus networks. ACM SIGCOMM Computer Communication Re-

view, 2010, 38(2): 69–74

12. Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Venkata S,

Wanderer J, Zhou J L, Zhu M, Zolla J, Hölzle U, Stuart S, Vahdat A.

B4: experience with a globally-deployed software defined WAN. ACM

SIGCOMM Computer Communication Review, 2013, 43(4): 3–14

13. Hong C Y, Kandula S, Mahajan R, Zhang M, Gill V, Nanduri M,

Wattenhofer R. Achieving high utilization with software-driven WAN.

ACM SIGCOMM Computer Communication Review, 2013, 43(4):

15–26



Dan LI et al. A survey of network update in SDN 9

14. Feamster N, Balakrishnan H. Detecting BGP configuration faults with

static analysis. In: Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation, 2015, 43–56

15. Mai H, Khurshid A, Agarwal R, Caesar M, Godfrey P, King S T.

Debugging the data plane with anteater. ACM SIGCOMM Computer

Communication Review, 2011, 41(4): 290–301

16. Kazemian P, Chang M, Zeng H, Varghese G, McKeown N, Whyte S.

Real time network policy checking using header space analysis. In:

Proceedings of the 10th USENIX Symposium on Networked Systems

Design and Implementation. 2013, 99–112

17. Khurshid A, Zhou W, Caesar M, Caesar M, Godfrey P B. VeriFlow:

verifying network-wide invariants in real time. ACM SIGCOMM

Computer Communication Review, 2015, 42(4): 467–472

18. Sekar V, Egi N, Ratnasamy S, Reiter M K, Shi G. Design and imple-

mentation of a consolidated middlebox architecture. In: Proceedings

of the 9th USENIX Symposium on Networked Systems Design and

Implementation. 2012, 323–336

19. Mahajan R, Wattenhofer R. On consistent updates in software defined

networks. In: Proceeding of the 12th ACM Workshop on Hot Topics in

Networks. 2013, 29–31

20. Reitblatt M, Foster N, Rexford J, Schlesinger C, Walker D. Abstrac-

tions for network update. ACM SIGCOMM Computer Communication

Review, 2015, 42(4): 323–334

21. Katta N P, Rexford J, Walker D. Incremental consistent updates. In:

Proceedings of ACM SIGCOMM Workshop on Hot Topics in Soft-

ware Defined NETWORKING. 2013, 49–54

22. Liu H H, Wu X, Zhang M, Yuan L, Wattenhofer R, Maltz D. zUpdate:

updating data center networks with zero loss. ACM SIGCOMM Com-

puter Communication Review, 2013, 43(4): 411–422

23. Fayazbakhsh S K, Chiang L, Sekar V, Yu M, Mogul J C. Enforcing

network-wide policies in the presence of dynamic middlebox actions

using flowtags. In: Proceedings of the 11th USENIX Symposium on

Networked Systems Design and Implementation. 2014, 543–546

24. Ludwig A, Rost M, Foucard D, Schmid S. Good network updates for

bad packets: waypoint enforcement beyond destination-based routing

policies. In: Proceedings of the 13th ACM Workshop on Hot Topics in

Networks. 2014

25. Mcgeer R. A safe, efficient update protocol for OpenFlow networks.

In: Proceedings of the 1st ACM Workshop on Hot Topics in Software

Defined Networks. 2012, 61–66

26. Jin X, Liu H H, Gandhi R, Kandula S, Mahajan R, Zhang M, Rex-

ford J, Wattenhofer R. Dynamic scheduling of network updates. ACM

SIGCOMM Computer Communication Review. 2014, 44(4): 539–550

27. Brandt S, Förster K T, Wattenhofer R. On consistent migration of flows

in SDNs. In: Proceedings of IEEE INFOCOM. 2016

28. Paris S, Destounis A, Maggi L, Paschos G, Leguay J. Controlling flow

reconfigurations in SDN. In: Proceedings of IEEE INFOCOM. 2016

29. Zhou W, Jin D, Croft J, Caesar M, Godfrey P B. Enforcing customiz-

able consistency properties in software-defined networks. In: Proceed-

ings of the 12th USENIX Symposium on Networked Systems Design

and Implementation. 2015, 73–85

30. John J P, Katz-Bassett E, Krishnamurthy A, Anderson T, Venkatara-

mani A. Consensus routing: the Internet as a distributed system. In:

Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation. 2008, 351–364

31. Mizrahi T, Rottenstreich O, Moses Y. TimeFlip: scheduling network

updates with timestamp-based TCAM ranges. In: Proceeding of the

2015 IEEE Conference on Computer Communications (INFOCOM).

2015, 2551–2559

32. Guo Z H, Su M, Xu Y, Duan Z M, Wang L, Hui S F, Chao H J. Im-

proving the performance of load balancing in software-defined net-

works through load variance-based synchronization. Computer Net-

works, 2014, 68(11): 95–109

Dan Li is an associate professor in Com-

puter Science Department of Tsinghua Uni-

versity, China. He received his PhD degree

in computer science from Tsinghua Uni-

versity in 2007. His research interests in-

clude future Internet architecture and data

center networking. He is an awardee of the

NSFC Excellent Young Scholars Program

in 2015.

Songtao Wang received his master degree

in system on chip from Southampton Uni-

versity, UK in 2011. Now he is a PhD stu-

dent in Tsinghua University, China. His re-

search interests include network update and

software defined datacenter network.

Konglin Zhu received his master degree in

computer science from University of Cali-

fornia, Los Angeles, USA in 2009 and his

PhD degree in University of Goettingen,

Germany in 2014 respectively. He is now

an assistant professor at Beijing University

of Posts and Telecommunications, China.

He is also a visiting scholar at Tsinghua

University, China sponored by FP7 CleanSky project. His research

interests include network virtualization and vehicular networks.

Shutao Xia received the BS degree in

mathematics and the PhD degree in ap-

plied mathematics from Nankai University,

China in 1992 and 1997, respectively. Since

January 2004, he has been with the Gradu-

ate School of Shenzhen of Tsinghua Uni-

versity, China, where he is currently a pro-

fessor. His current research interests in-

clude coding theory, information theory and networking.


