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Abstract
In-network services, often implemented using middleboxes,
are key components of today’s network applications (e.g.,
CDN, antiviruses, proxies, etc.). Current solutions for the
selection of a serving middebox assume the presence of a
single middlebox on the end-to-end network path, leading to
not optimal solutions in terms of network performance when
multiple middleboxes are inserted i.e., multiple parties are
involved. This paper highlights the cost of a non-optimized
middlebox selection strategy and suggests directions for fur-
ther investigation.

1. Introduction
In-network services are important building blocks for to-
day’s network applications [1, 2]. Content Distribution Net-
works (CDNs), antiviruses, privacy protecting proxies, per-
formance enhancers, are just a few examples of such ser-
vices. However, the Internet’s architecture and protocols
ignore to a large extent the presence of in-network ser-
vices, forcing network and service providers in implement-
ing workarounds [3] that may negatively impact the per-
formance delivered to final users. The issue is particularly
relevant when several in-network services, provided by third
parties, are introduced on the end-to-end path.

Previous work [2] focused on guaranteeing that an in-
network service is not hidden to any of the communication’s
end-points, or on enabling an end-point in deciding whether
to use an in-network service or not, when connecting to an-
other end-point [4]. Still, the mentioned works assume that
the node provisioning a given service, i.e., the middlebox, is
known in advance. However, an in-network service is usu-
ally implemented using several middleboxes, typically de-
ployed at different locations [5]. The selection of a specific
middlebox is performed by the in-network service provider,
which takes into account a number of variables, including
system and network loads, end-point locations, local regu-
lation constraints, etc. [6] For instance, IP anycast [5] and
DNS redirection [7] are state of the art techniques adopted
by service providers.
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Figure 1: Example scenario.

In this paper, we consider the case of multiple in-network
services explicitly inserted within the end-to-end path (Fig.
1), by either the client or the server. Using the current DNS
architecture, we show that today’s possible middlebox selec-
tion approaches may introduce a significant penalty in the
transfer time of TCP flows. Then, we highlight the space for
possible improvements and future research directions.

2. A Strawman Solution
Consider the example scenario of Fig. 1. The client (C)
connects to her bank’s web site (B). The client subscribed to
a parental control in-network service (P), while the content
server subscribed to a CDN service (CDN). Each in-network
service is specified by a single domain name (e.g., parental-
ctr.com, cdn.com) while it is deployed at multiple locations
in the network, thus specified by multiple IP addresses. The
authoritative DNS of each in-network service provider, for
each request, selects the middlebox to use, mapping it to
the related IP address. The serving middlebox is selected
dynamically – among other parameters – to be the closest
(in terms of delay) to the requesting client. In the presented
scenario, the parental control service uses two middleboxes
deployed at different locations: P2 is the closest to the user,
while P1 is the closest to the bank. The CDN has deployed
three middleboxes in the network: CDN3 is the closest to
the user, while CDN1 and CDN2 are the closest to P1 and
P2, respectively. The selection of the serving middleboxes
can happen in one of the following ways:

1) Client Selection (CS): the client sends 3 DNS queries
i.e., a first query to resolve parental-ctr.com, a second to
resolve cdn.com and a third to resolve bank.com. According
to Fig. 1 and assuming each authoritative DNS selects the
serving instance based on the client’s network location, P2

and CDN3 are selected to be the closest to the client.
2) Hop-by-hop Selection (HS): the client uses the EDNS0

client-subnet extension of the DNS protocol [8] in order to
enhance the selection process for the service chain. Such
extension allows a DNS client to specify an IP prefix in a
query, in order to provide the DNS server with a hint about
the client’s location. Therefore, the client’s subnet is defined



as source for the first query, the parental control and the CDN
for the second and the third query, respectively. In this case,
P2 is selected to be the closest to the user while CDN2 is
selected to be the closest to P2.

3) Global Selection (GS): in this case, we assume to
have a full visibility of all the middlebox instances and
their locations. Therefore, we can solve the GS problem
modeling it as a shortest path selection problem, providing
the best among the possible solutions. This would lead to the
selection of P1 and CDN1 in the example of Fig. 1.

3. Evaluation
Experiment. In our experiment, we consider service chains
composed of 5 in-network services. In order to better un-
derstand the implication of the different selection strategies,
we assume that TCP is used to establish the connections
throughout the chain and the Time To First Byte (TTFB)
has been selected as a comparison metric. It represents the
time required for a client to receive the first byte of a con-
tent server’s response to a client issued request. Assuming
the end-to-end delay of D, TTFB is proportional to it by a
factor four (TTFB = 4D) [9]. We implemented a simu-
lator in Python that creates weighted network graphs com-
posed of one client, several in-network services’ instances
and one content server (which we assume to be deployed in
a single network location). Each node is placed randomly
on a 100x100 coordinate grid, and the Euclidean distance
between any two nodes is considered as this edge’s weight
(i.e., network delay). We implemented CS and HS while we
use the NetworkX Dijkstra implementation for GS.

We generated network graphs with a number of nodes
varying from 27 (i.e., 5 middleboxes per service) to 452
nodes (i.e., 90 middleboxes per service) which represents a
wider distribution of the in-network services in the network.
For each experiment, we generated 100 different graphs -
1000 graphs in total throughout the whole experiment – and
CS, HS and GS are executed on the same graph.
Result. Fig. 2 shows a box plots of the results. The x-axis
represents the number of middleboxes deployed by each in-
network service. The y-axis represents the percentage of
TTFB required by CS and HS compared to GS. As we ex-
pected, the results show that for all the cases and consider-
ing all quantiles GS provides the best solution. In fact, all
the medians are greater than 0, which means that CS and
HS always show an increase on the TTFB compared to GS.
Observing the graph, we can make two further observations.
The first observation is that HS produces better results than
CS, both in terms of lower percentages and lower spread
(smaller boxes, shorter whiskers). Particularly, considering
the medians, for each experiment CS selects network paths
which show a delay (or TTFB), on average, 49% higher
compared to GS. HS, instead, shows 28% higher costs. The
second observation is that even considering the HS strategy,
there is space for optimization, as the first quartile is in most
cases around and above 20%. This motivates further inves-
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tigation in this direction, considering that for the considered
metric, small increase in the delay may have an important
impact. For instance, Amazon estimates that an increase of
delay as little as 100ms cuts its revenue by 1% [10].

4. Future Work
The overheads highlighted by our simulations are rooted in
the uncoordinated decisions performed by multiple and in-
dependent parties involved in the end-to-end service deliv-
ery. However, GS is difficult to be applied in practice, since
it requires the full knowledge of all the in-network services’
instances. In fact, they might not be aware of each other or
they might not be willing to exchange information. Even as-
suming the parties are aware and agree on collaborating with
each other, it is still unclear which is the minimal amount of
information they would need to share in order significantly
improve on the selection process. Answering this question
and providing a system that efficiently solves these cases is
the focus of our future work.
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