
Received: 28 June 2016 Revised: 30 September 2016 Accepted: 8 December 2016

DOI 10.1002/nem.1965

R E S E A R C H A R T I C L E

CATENAE: A scalable service function chaining system for
legacy mobile networks

Roberto Bifulco Anton Matsiuk Alessio Silvestro

NEC Laboratories Europe, Heidelberg, 69115,

Germany

Correspondence
Roberto Bifulco, NEC Laboratories Europe,

Heidelberg 69115, Germany.

Email: roberto.bifulco@neclab.eu

Funding information
EU in the context of the “FP7 ITN CleanSky”

project, Grant/Award Number: 607584

Summary
Service function chaining promises to ease the introduction of new services in

mobile networks by enabling the dynamic composition of virtualized network func-

tions. However, current implementations rely on new tunneling protocols and on

network infrastructure changes, which make deployments in legacy networks dif-

ficult. In this paper, we present a system for service function chaining that can be

readily deployed in mobile networks, without requiring any protocols or network

modifications. Our system, named CATENAE, exploits the specific properties of

the targeted deployment environment to overcome scalability issues and efficiently

implement traffic steering. Using a centralized controller, CATENAE coordinates

software-defined networking software switches to implement a steering method

based on MAC address rewriting. Furthermore, we present the design of a hybrid

hardware-software software-defined networking switch to realize a scalable network

traffic classifiers, which CATENAE employs to assign network flows to correspond-

ing function chains. Using experimental evaluations based on physical testbeds,

emulated environments, and simulations, we demonstrate that our approach is ready

to be deployed in mobile networks, scales to handle expected mobile networks’

workloads, introduces no overhead in the (virtual) network functions, and integrates

seamlessly with legacy network management systems.

KEYWORDS

management approaches: policy-based management, methods: design, methods:

experimental approach, network management: IP networks, network management:

LANs, service management: hosting (virtual machines)

1 INTRODUCTION

Network operators deploy network functions to enforce their

policies and to provide additional services on top of plain

connectivity.2 Content caching, Network Address Translation

(NAT), Transmission Control Protocol (TCP) video transcod-

ing, and HTTP header enrichment are examples of such

services. Despite their ubiquitous usage,3 network functions

*An earlier version of this work was presented in this 1 study.1 This new

version includes 2 relevant extensions. First, we present a case for deploy-

ing an end-of-chain classifier, which generalizes the system to work also in

deployments that do not use NATs. Second, we describe a technology to scale

the classifiers using commodity hardware SDN switches. This included the

design of offloading algorithms for such hybrid hardware-software architec-

tures and their evaluation.

deployment is still performed by modifying the network

topology. That is, network functions are hard-wired on the

network traffic’s path. The inflexibility and complexity of this

approach is not acceptable when network functions are imple-

mented by means of software running in virtual machines,

as envisioned in the case of network function virtualization.4

In fact, hard-wiring would hinder the benefits brought by the

possibility of dynamically deploying virtual network func-

tions (VNFs) on general purpose servers. Therefore, there is a

growing interest on service function chaining (SFC) systems,5

which enable the flexible deployment of network functions

while guaranteeing their configurable and dynamic chaining.

In general, a SFC system assigns a network flow enter-

ing the managed network to a chain of functions and steers

Int J Network Mgmt. 2017;e1965. wileyonlinelibrary.com/journal/nem Copyright © 2017 John Wiley & Sons, Ltd. 1 of 14
https://doi.org/10.1002/nem.1965

http://dx.doi.org/10.1002/nem.1965

2 of 14 BIFULCOET AL.

the flow through the functions of such chain, according to

the chain’s functions ordering.6 A number of challenges arise

when addressing the design of a SFC system. First, assigning

a network flow to its chain requires network traffic classifi-

cation, an operation that is critical for the system scalability

since it should be performed for all the handled traffic. Sec-

ond, traffic forwarding should be performed according to the

chain the traffic belongs to, instead of following the typical

forwarding approach, e.g., based on IP routing. Third, net-

work flows are usually bidirectional, that is, there is an

upstream and a downstream direction and a network function,

e.g., a firewall, may need to handle both of them. This requires

to perform a coordinated classification of upstream and down-

stream flows and the enforcement of symmetric paths for the 2

directions. Finally, network functions may have dynamic and

opaque behaviors that modify the network traffic in unknown

ways, which may introduce a need for traffic reclassification

or even make the traffic unclassifiable.7

To address these challenges, a number of SFC systems

have been already proposed7–11. However, they usually target

green-field or long-term deployments. In fact, they require a

number of changes either in the network hardware7 or in the

network functions,11 or in both.8 In other cases, they require

modifications to the network architecture.9 Ready to deploy

solutions, which do not require such changes, may instead

not handle all the aforementioned challenges. For example,

some SFC systems are unable to deal with opaque network

functions actions.7,10 Regardless of the adopted solutions, the

proposed systems address SFC in a general way, supporting

a broad range of deployment scenarios without considering

their specific properties and constraints. That is, they usu-

ally adopt a “one-size-fits-all” approach. While we recognize

the intrinsic value of such a general solution, we also notice

that not all the deployment scenarios share the same set of

requirements, with the final result of SFC systems that pro-

vide unnecessary features for the specific scenarios in which

they are deployed. At the same time, such systems usually

fail to satisfy a critical requirement of many today’s produc-

tion deployments, i.e., the SFC solution should introduce a

minimum impact on the legacy infrastructures.12,13

In this paper, we argue that it is possible to simplify the

implementation of a SFC system, by carefully tailoring the

SFC solution to its specific deployment scenario. Our main

contribution is to demonstrate that this statement holds true

for the practical case of implementing SFC in mobile net-

works. To this aim, we present the design and implementation

of CATENAE†, a system that supports SFC in today’s mobile

networks without introducing new protocols, without chang-

ing the legacy infrastructure, and without changing network

functions behavior. CATENAE leverages the unique proper-

ties of a mobile network’s scenario to provide the desired

functions chaining features, including the handling of opaque

†Catenae is a Latin word that means “chains.”

network functions’ actions. Traffic forwarding is performed

by rewriting network packets’ header to steer network flows

from one function to the next one in the chain. Rewrit-

ing rules are configured using software-defined networking

(SDN) software switches, which are anyway deployed at the

servers hosting VNFs.14 Flow reclassification after a VNFs

is done by creating per-VNF VLAN topologies, using an

approach conceptually similar to this 1 study.15 By imple-

menting a proof of concept prototype, we demonstrate that

CATENAE does not add perpacket processing overheads; it

integrates nicely with legacy network management systems

and it is fully compatible with legacy network infrastructures,

and functions while supporting millions of network flows.

Organization. The paper is structured as follows:

• Section 2 introduces background information on the

mobile networks where CATENAE is deployed and intro-

duces related work;

• Section 3 presents the CATENAE’s design, describing its

architecture and deployment options;

• Section 4 describes the design of the classifiers employed

to assign network traffic to service function chains;

• Section 5 presents the CATENAE’s traffic steering method

and provides a concrete example of the method applied to

a network scenario;

• Section 6 reports the results of our prototype evaluation;

• Section 7 discusses our design in the light of the evaluation

results and further describes differences with related work.

Finally, we conclude our paper in Section 8.

2 BACKGROUND AND RELATED WORK

This section presents relevant background information about

the mobile networks in which CATENAE can be deployed,

introduces the current work on SFC performed by standard

organizations like Internet engineering task force (IETF), and

provides an overview of the SFC solutions proposed by the

research community.

2.1 Mobile networks

Our work is focused on implementing SFC in long-term evo-

lution (LTE) cellular networks (cf Figure 1). A LTE network

gives connectivity to a user equipment (UE) using a radio

network provided by a set of eNode-Bs (eNBs), which are

deployed by the operator over a geographic area. The eNBs

encapsulate UE’s network flows in a tunnel that, traversing

the serving gateway (SGW), brings user’s IP packets to the

packet data network gateway (PGW). The PGW is the UE’s

gateway towards IP networks, i.e., all the IP traffic coming

and going to the operator’s IP network (and to the Internet)

goes through the PGW. Also, the PGW is the point where

the UE’s IP address actually exists in the network. The policy

BIFULCOET AL. 3 of 14

FIGURE 1 Long-term evolution network architecture

and charging rules function provides the PGW with the poli-

cies to handle users’ traffic, e.g., it provides the quality

of service configuration. After the PGW, user’s packets are

sent to the SGi-LAN, which is the place where the opera-

tor provides additional services.16 The SGi-LAN is usually an

Ethernet network, where network functions are deployed and

wired together either physically or logically (e.g., defining

VLANs). Network functions can be either transparent, i.e.,

they do not modify packets’ header, or opaque, i.e., they mod-

ify packets’ header. After the packets have been processed by

the various functions, they are finally delivered to an Internet

gateway (IGW) that forwards them to the Internet.

We highlight a few points about LTE networks, which

will help in understanding the design decisions presented

in Section 3. First, operators plan to replace legacy net-

work functions with virtualized ones, by deploying, in the

SGi-LAN, a relatively small number of servers (e.g., less than

a hundred) that will host VNFs. Thus, we expect an SFC sys-

tem will deal with VNFs in the number of thousands and that

these VNFs are connected to each other by an L2 network,

since the SGi-LAN is usually a traditional Ethernet network.

Second, the network traffic exposes properties that are typi-

cal of LTE deployments. That is, the upstream flows (ie, those

generated at the users) are usually much smaller in size than

the downstream flows.17 Also, the connections are (almost)

always initiated in the upstream direction.

2.2 Service function chaining in standards

The IETF is the main standard organization that is dealing

with SFC, stating the SFC problem in RFC18 and defining

the architecture of an SFC system in RFC.19 In the IETF

architecture, a network function is relabeled service function

(SF). Thus, an SFC is an abstract definition of an ordered set

of SFs.

The incoming traffic, e.g., in the upstream direction, at the

edge of an SFC-enabled domain, is classified by a service

classification function, to perform traffic steering through

the correspondent chain. The service classification func-

tion adds an SFC-encapsulation to the classified packets.

Notice that the architecture defines the encapsulation format

as independent from the network encapsulation protocol used

to interconnect the elements. This way, the SFC system

does not necessarily need a homogeneous network between

the chain’s functions and can instead support more com-

plex scenarios that enable service providers to use different

technologies. The SFC-encapsulation is used by another com-

ponent of the architecture: the service function forwarder

(SFF). SFFs read the SFC-encapsulation to send network

packets to directly attached SFs or to forward them to the

SFF to which the next function in the chain is attached.

For instance, a network switch may host an SFFs function

if extended to read the SFC-encapsulation format. Because

the RFC7665’s architecture assumes that SFs can deal with

the SFC-encapsulation format, SFC-unaware functions (e.g.,

legacy network functions) are supported by the usage of an

SFC-proxy. A SFC-proxy removes the SFC-encapsulation at

the ingress of a SFC-unaware area and adds it again on the

egress of that area. An end-of-chain classifier has the respon-

sibility to remove the SFC-encapsulation when packets exit

the SFC-enabled domain and to classify the packets belonging

to the downstream traffic.

Network Service Header. While there are no standards

defined for the SFC-encapsulation format, a currently dis-

cussed proposal is the Network Service Header (NSH). The

NSH is composed of a Base Header (32 bits), a Service Path

Header (32 bits), and zero or more Context Headers. The

Base Header provides information about the Service Path

Header and the payload protocol. The Service Path Header is

composed by a Service Path ID to identify the chains and a

Service Index to provide location within the chain. Context

Headers carry opaque metadata and variable length encoded

information. The NSH header is located between the original

packet/frame and the overlay network encapsulation protocol,

if any. In fact, current NSH-based prototypes usually assume

that an overlay network, e.g., based on VxLAN, connects

SFFs. The original data unit, e.g., an L2 frame or an L3 packet,

thus, is encapsulated within different transport protocols such

as VLAN, VxLAN, Generic Routing Encapsulation Ethernet,

etc. When an SF receives a packet coming from a service

chain, it will decrement the service index header to update the

location of the packet within the chain. At the end of the chain,

4 of 14 BIFULCOET AL.

an end-of-chain classifier will remove the NSH header and

forward the packet normally. NSH is transport independent

because it can be used with different encapsulation protocols.

It provides information about the chain each packet belongs

to, through the Service Path ID header, and the location within

the chain, through the Service Index Header. Context Headers

make possible to share network and service metadata (L2-L7)

that enable to reclassify the packets after an SF.

2.3 Service Function Chaining in research

A number of proposals have been presented by the research

community, to address the challenges of SFC.

SIMPLE7 provides SFC using a SDN network. It imple-

ments inter-switch tunnels to aggregate the traffic with com-

mon destinations, to reduce the total number of forwarding

rules in the SDN switches’ forwarding tables. When such

optimization is not required, hop-by-hop fine granular for-

warding rules are used instead. Traffic reclassification, after

an opaque network function, is performed using a dynamic

module, which analyzes the similarities between packets

entering and exiting the network function. However, such

solution shows limited accuracy, and it introduces significant

delays in the network flows.

To overcome such limitations, FlowTags8 suggests the

modification of the network functions to provide contextual

information, in the form of a tag, which is added to the

processed network packets, to perform traffic classification.

The tags are defined by a centralized controller and cached

at the network functions, using an approach similar to the

handling of network packets at the controller in OpenFlow

networks.20 Like in SIMPLE, packets forwarding is performed

writing appropriate forwarding rules in the SDN switches

along the path.

Using a SDN network to perform traffic steering is the

solution adopted also by StEERING.10 In this case, the authors

leverage a smart encoding of the forwarding rules in a multi-

table switch’s pipeline, to scale the total number of supported

chains and network flows, still providing fine-grained traf-

fic steering. However, StEERING is not able to reclassify the

traffic in the presence of opaque network functions.

Finally, SoftCell21 presents a solution that takes into

account the deployment scenario’s properties to simplify the

implementation of SFC in mobile networks. To the best of

our knowledge and putting aside CATENAE, it is the only

proposal that explores such an approach. To be deployed,

SoftCell requires a network of SDN switches and a modi-

fication of the mobile network’s architecture. For instance,

SoftCell removes serving gateway and PGW functions and

therefore removes LTE’s mobility management introduc-

ing a custom solution instead. Traffic classification is per-

formed at switches colocated with the eNBs for the upstream

direction, while classification for downstream traffic is per-

formed leveraging information encoded in the source IP

address/transport port of outgoing packets. In fact, traffic

is assumed to be always initiated in the upstream direc-

tion; thus, any downstream packet will carry in the destina-

tion IP address/transport port the original upstream flow’s

encoded value.

3 DESIGN

This section presents our design choices, the CATENAE’s

architecture, and provides an overview on possible deploy-

ment options in LTE infrastructures.

The main objective of CATENAE’s design is to provide

SFC while minimizing the impact on current infrastructures.

To this aim, our design decisions are taken in the light of

the properties characterizing the deployment scenario, ie, the

LTE network. We make a few observations that motivate our

design decisions. First, the main and most important observa-

tion is that network functions are connected using an Ethernet

network, while user traffic is composed of IP packets, because

the tunnel that brings the traffic from eNBs to the PGW

only transports IP packets. Thus, the user traffic is agnostic

to the L2 packets header, and therefore, we can manipulate

the L2 header to perform traffic forwarding according to our

needs. Second, the upstream flow is always started before the

downstream flow, and upstream traffic’s throughput is usually

orders of magnitude smaller than downstream one. Because

of these 2 observations, we can perform traffic classification

in the upstream direction using a software classifier. In fact,

while the classifier is traversed by all the user traffic, it could

be still able to scale to handle millions of flows, if these flows

contribute a relatively small aggregated throughput.

The remainder of this section presents the way we cap-

ture these observations in the designed architecture and in the

corresponding traffic steering method.

3.1 Architecture

CATENAE’s architecture (cf Figure 2) is composed of 4 ele-

ments: the classifiers, which perform traffic classification

on the packets entering the SGi-LAN; the VNFs’ switches,

which are deployed at the servers and connect VNFs with

the SGi-LAN; the SGi-LAN itself, i.e., an Ethernet network

that connects classifiers and VNFs’ switches with each other;

and the SFC controller that configures classifier and VNFs’

switches in a coordinated way to enforce function chains. Both

the classifiers and the VNF’s switches are SDN switches (e.g.,

they implement OpenFlow), while the SGi-LAN implements

a typical MAC learning algorithm. Thus, the SFC controller

does not change the SGi-LAN network’s operations but uses

it as a mere transport network between VNFs located on

the servers.

The SFC controller offers a function chains configura-

tion interface, which could be connected to e.g., the policy

and charging rules function of the LTE architecture. Upon

reception of a chain installation request, the SFC controller

BIFULCOET AL. 5 of 14

FIGURE 2 CATENAE’s architecture

implements the chain by installing forwarding entries at all

the involved switches. Function chains are described by a list

of flow identifiers (FIDs) and a list of functions. Each FID

includes one or more of the following fields: IP addresses,

transport ports, and the IP header’s DSCP field. Also, while

the FID always defines the upstream direction of a flow, it

also identifies the downstream direction as well. In fact, the

downstream direction of a flow can be identified by switching

source IP addresses and transport ports values with destina-

tion ones. The functions’ list contains the chain of network

functions for the flow identified by the FIDs, specified in the

order in which the upstream flow should traverse them. The

last function in the list is the chain’s exit point, e.g., a NAT.

Each network function is further described by a network loca-

tion. Network locations can be both provided with a static

configuration, or the SFC system can perform a lookup for the

location using a different interface, e.g., connected to a Virtual

Machines (VMs) management system.

CATENAE supports 2 different deployment models,

depending on where classifiers are deployed. In particular,

the most general configuration assumes the presence of both

an upstream classifier (u-classifier) and a downstream clas-

sifier (d-classifier). However, CATENAE can also use just

the u-classifier, by making a stronger assumption on the

deployment scenario, i.e., assuming the deployment of NATs

as last chains’ function. The next subsections describe the 2

deployment options.

3.2 Two-classifier configuration

In a 2-classifier configuration, CATENAE uses a classi-

fier per network traffic direction, i.e., upstream and down-

stream. Please notice that while conceptually separated, the

u-classifier and d-classifier can be implemented by one sin-

gle device. There are 2 important issues to be addressed with

this configuration: first, the classifiers have to handle the

entire system’s network traffic, which impacts the overall sys-

tem scalability; second, the downstream classifier needs to

dynamically learn packet headers for flows that have been pro-

cessed by opaque network functions. In Section 4, we further

elaborate on these issues.

3.3 Single classifier configuration

In the majority of mobile network deployments, there is

always a NAT function used in a chain,3 since private IP

addresses are usually in use on the UE-side.22 In such cases,

CATENAE can perform traffic classification in the down-

stream direction without adding a dedicated d-classifier. This

is accomplished mandating the deployment of NAT func-

tions as the last chain’s functions, which is anyway already

a common practice. A NAT function performs a mapping

between upstream traffic and corresponding downstream traf-

fic, to apply address translation. When an upstream’s packet

traverses the NAT, its source IP address is rewritten with a

NAT’s routable IP address. Thus, any corresponding down-

stream traffic’s packet will be delivered to the NAT, hav-

ing the destination IP address set to the NAT’s routable

IP address. Because the NAT function is first hit by the

already classified upstream traffic, the NAT will associate

any downstream traffic to its upstream flow.21 In effect, the

NAT is providing both address translation and traffic clas-

sification, removing the need to deploy a dedicated classi-

fier. Furthermore, as NATs are virtual network functions,

they can be scaled to match the workload experienced by

the system, following the same procedures used for any

other network function.

3.4 Deployment

CATENAE can be deployed in legacy SGi-LANs. The

deployment process requires the configuration of SDN soft-

ware switches in the servers connected to the SGi-LAN, the

deployment of the SFC controller, and the redirection of the

user traffic to the CATENAE’s classifiers. While the former

activities are a matter of software configuration on the servers,

the redirection of the traffic to the classifier is the actual hook

of the SFC system in the SGi-LAN. Such operation is as easy

as changing the default IP gateway address in the PGW’s

configuration. In fact, the classifier is implemented as a soft-

ware switch running on a general purpose server connected

to the SGi-LAN. Of course, if a d-classifier is also used, the

CATENAE deployment involves also the installation of the

hardware SDN switch used to implement the classifier.

4 CLASSIFIERS

In this section, we present the design of the classifiers

employed in CATENAE.

6 of 14 BIFULCOET AL.

In general, a classifier is configured with rules that define

the chain a network packet belongs to. In the most common

case, a rule specifies a set of packet headers, i.e., a network

flow, and the corresponding classification action. In CATE-

NAE, the classification action is as simple as forwarding

the packet to the first function in the chain for the upstream

flows, or to the last one for the downstream ones (for the

downstream direction, the last chain’s function is in fact the

first function in such direction). CATENAE uses 2 types of

classifiers, depending on the direction of the flows being

classified.

The u-classifier only performs classification for packets

entering the SGi-LAN in the upstream direction; in fact,

CATENAE enforces symmetric paths for upstream and down-

stream flows, with respect to the network functions, but only

upstream flows are processed by the u-classifier. In our archi-

tecture, this classifier is implemented using a SDN software

switch. Having a software switch handling all the traffic com-

ing from the PGW may raise scalability concerns; however,

upstream flows are contributing just a fraction of the over-

all load (cf Section 6). On the other side, a software switch

guarantees very large forwarding tables, i.e., one could use a

very large number of rules to classify the network traffic. In

particular, a software switch typically uses various solutions

that involve hash tables that leverage general purpose servers’

memory hierarchy to achieve high throughput. This finally

guarantees the possibility of using cheap DRAM to host most

of the classification rules, while a much faster cache, hosted

in the CPU’s SRAM, provides high throughput for the subset

of highly used rules.23

The second type of classifier is the d-classifier. In this case,

the classifier has to face a much more pressing scalability

problem, since downstream traffic is usually 10 times bigger

in volume than upstream one (cf Section 6). A software switch

may not scale to meet the system throughput requirements;

thus, a hardware classifier may be needed instead.

While one could rely on ad-hoc hardware for such purpose,

we preferred maintaining a consistent architecture and imple-

ment the classifier with a commodity hardware SDN switch.

The main advantage of such a decision is that the classifier

interface is always the same for both the software and hard-

ware components, i.e., OpenFlow. However, current hardware

SDN technology can only offer limited space to host the clas-

sification rules.24 Also, a strategy that capitalizes on the table

space, by installing entries only when a chain’s flow is actu-

ally active,8,25 is viable only in few cases. In fact, hardware

switches could not support scenarios that require high entries

installation rates, being typically too slow at installing new

entries.26,27

To tackle this issue, we developed HSwitch, taking inspi-

ration from previous work that combines a hardware switch

with a software switch to extend the switch’s forwarding table

size.28 The remainder of this section describes our implemen-

tation of the d-classifier.

4.1 d-classifier design

Our d-classifier design27 connects a hardware SDN switch

with a server that runs a software SDN switch.‡ A packet

that does not match a hardware switch’s forwarding entry is

sent to the software switch, where the SFC controller installs

all the forwarding entries. The software switch is extended

to implement a logic that offloads entries to the hardware

switch, depending on the network load. In effect, the hard-

ware switch is used as a microflow cache,23 i.e., the entries

moved to hardware match on all the header fields the switch

can match on. Notice that a microflow cache helps in avoid-

ing the entries dependency issues, which are typical in SDN

switches.28 When the system is operative, the majority of the

entries are installed in the software switch, while the hard-

ware hosts entries up to its maximum capacity. The offloading

algorithm should guarantee that the entries installed in hard-

ware handle the majority of the network packets, to avoid

overloading the software switch.

4.2 Offloading algorithms

Given the hardware switch’s flow table size and its entry

installation rate (FTEIR) as constraints, an optimal caching

algorithm for our d-classifier design should maximize the

traffic amount offloaded to the hardware switch. While

the optimal algorithm for populating the microflow caches

is, generally, a NP-hard problem,28 we investigate several

heuristics, which exploit the OpenFlow primitives (e.g.,

time-outs and counters) in a lightweight manner. We consider

the 3 following approaches:

1. FIFO1: the algorithm implements a generic FIFO flow

caching strategy. When a packet is handled by the soft-

ware switch, a pointer to the matching entry is added to

a FIFO queue. Once there is a free space in the hardware

switch’s flow table, a pointer is taken from the offload-

ing queue and the corresponding entry is installed in the

hardware. The algorithm implies a minimum computa-

tional overhead, since it does not involve any additional

logic or flow statistics evaluation. If the flow size distri-

bution is uniform over the time and the Flow Arrival Rate

(FAR): FAR ∼ FTEIR, the hardware switch can accom-

modate a constant share of incoming traffic limited by its

table size and the FTEIR, while the rest is handled by the

software switch. If FAR ≫ FTEIR, the FIFO offloading

queue grows indefinitely. Taking into the account that the

majority of flows in a typical LTE network are short-lived

flows,17 these flows expire in the overloaded FIFO queue

before being offloaded to the hardware switch. In this case,

the expired flows do not carry traffic anymore; the load of

‡An alternative implementation we are currently exploring

leverages the powerful CPU of modern white box switches,

such as the ones specified by the OpenCompute project

http://www.opencompute.org/projects/networking.

BIFULCOET AL. 7 of 14

the hardware switch vanishes, and the effectiveness of the

algorithm degrades rapidly;

2. FIFO2: to overcome the offloading queue thrashing

problem of the previous algorithm, we improve it in the

following way. The flow entry is added into the offloading

FIFO queue only if a packet for such entry was received

in the last second. One of the ways to implement the

described logic is to leverage individual flow statistics29

by polling the perflow counters in the FIFO queue with a

1 second interval. This additional logic allows cutting off

the expired flows; however, it still does not perform any

optimization of the offloaded traffic share;

3. Heavy Hitters: the algorithm identifies heavy hitters in

the FIFO queue allowing for better offloading of network

flows to the hardware switch. This is done by marking

the entries in the queue that matched a number of pack-

ets above a given threshold in the last second. As men-

tioned before, the logic can poll individual statistics of

the flows in the offloading queue. The threshold value is

derived from the analysis of the traffic traces and should

be changed depending on the specific deployment. Marked

entries are selected first for offloading, when there is free

space in the hardware switch.

In any case, entries that are cached in hardware are removed

when they do not match packets for a period longer than

10 seconds. This guarantees protection from cache trashing

effects30 and simplifies the implementation of the offloading

algorithm, at the cost of a less efficient offloading. Recall-

ing the offloading algorithm is implemented by the software

switch, which would require to poll hardware switch’s coun-

ters to implement a more complex cached entries deletion.

Moreover, hardware SDN switches’ counters may not be

completely reliable.31 Therefore, we use only the software

switch’s counters and leverage the hardware SDN switches’

idle time-out feature.29 Decreasing the idle time-out on the

one hand enables evicting of the expired flows from the hard-

ware cache faster and, on the other hand, increases the churn

of cache misses. In turn, cache misses increase perpacket

delay and jitter, since their packets need to be processed in

the software switch again. The optimal idle time-out value

depends on the incoming traffic characteristics and can be

derived from flows duration distribution. The evaluation of

the algorithms is presented in Section 6.

4.3 Learning packet headers

When a network function modifies network packet headers,

the downstream classifier cannot be configured with the cor-

rect classification rules. In fact, an opaque network function

is applying unknown modification to a packet; thus, the clas-

sifier has to first learn the new packet’s headers to specify the

classification rule for downstream flows. Luckily, the pres-

ence of a software switch helps our system in dynamically

learning the new headers for a given packet. In particular,

the software switch is configured to create a new forwarding

entry for a downstream flow, whenever a new upstream flow is

detected.§ The newly generated entry is built to match on the

upstream’s source and destination IP addresses and transport

ports, but switching their positions.

To correctly steer the downstream packet toward the cor-

responding chain, the classifier looks at the upstream flow’s

packets source MAC address. In fact, such address corre-

sponds to the last function in the chain, and in our traffic

steering method, it also encodes the chain information. This

point will be further clarified in Section 5.

Notice that we can apply this packet headers learning tech-

nique because we deal with flows that are always initiated in

the upstream direction.

5 TRAFFIC STEERING

Traffic steering is the process of defining the network paths

for network flows, according to an explicit policy. CATENAE

performs traffic steering configuring each of the managed

switches (including the classifiers) to classify an incoming

packet, retrieve the chain it belongs to, and forward it to

the chain’s next function. Since Ethernet networks perform

packet switching based on Ethernet destination addresses,

CATENAE performs packets delivery to a given function,

over the SGi-LAN, configuring the switches to rewrite Eth-

ernet addresses. In the remainder of this paragraph, we

describe the operations for upstream and downstream cases.

Notice that for the remainder of this section, we assume a

single-classifier configuration. However, it should be clear

that the traffic steering method does not change (and is not

affected) when using a 2-classifier configuration instead.

Upstream. Upstream flows are first handled at the

u-classifier, which uses the FIDs to classify packets and send

them to the respective first chain’s function. If the function is

transparent, the function’s switch delivers the packet directly

to the function and reclassifies it using the FIDs, after the

function’s processing. When a function is opaque, packets’

header values change, making the system unable to reclassify

flows using the FIDs. Also, all the functions coming after an

opaque one are handled as opaque functions by the system.

In fact, once a packet’s header has been changed, the orig-

inal FIDs do not match the flows anymore. In these cases,

classification is achieved creating local virtual L2 networks

between a function and its switch. Because network functions

typically separate flows received from different L2 networks,

a packet will not change its network after the function. Hence,

a different (virtual) L2 network per each chain traversing the

function helps in associating a packet with its chain. That is,

packets belonging to a given chain are tagged with a VLAN

tag, which is maintained unchanged when the packet traverses

§For example, when using OpenvSwitch,23 the special learn() forwarding

action can be used to achieve this behavior.

8 of 14 BIFULCOET AL.

FIGURE 3 Forwarding tables configuration example, for the steering of a flow with FID “src_IP=10.0.0.1”, which traverses the function chain F1, F2, F3

the function¶. The VLAN tag is removed before sending a

packet back to the SGi-LAN, since it is meaningful only on

the switch-function link. However, the classification infor-

mation is required also at the next function in the chain;

thus, this information is encoded in the packets’ source Eth-

ernet address. Such an address is generated to be unique for

each couple chain/function, and it is generated when the next

chain’s function is attached to a different software switch. In

fact, for functions attached to the same switch, it is enough to

read the VLAN tag value. When packets are received at the

next function’s switches, instead, classification is performed

looking at the source Ethernet address.

Downstream. Downstream flows are classified either by

the d-classifier or by the NATs deployed as chains’ last

functions. The function chain is then traversed in reverse

order. CATENAE operations are again dependent on the type

of function the packets traversed. Until there are opaque

functions traversed by the downstream flow, the function’s

switch performs flows classification using VLANs. As in the

upstream case, when required, the classification information

is encoded in a MAC address value, which this time is writ-

ten in the packet’s Ethernet destination. Recall that this MAC

address was generated already for each chain and functions

during the handling of the upstream flow. Hence, the location

of the generated address was already learned by the SGi-LAN.

After the last opaque function (ie, the first one in the per-

spective of the upstream flow) has processed the downstream

flow, the original FID is used to perform packets classifi-

cation‖. Here, we assume an opaque function restores the

original packet header for the downstream flow. For example,

for downstream flows, a NAT restores the original upstream

flow headers, with switched source/destination addresses and

transport ports. Thus, the downstream flow coming from an

opaque function can be classified at a transparent function’s

switch that receives it, using the FID.

¶In today’s network functions, this feature is usually called VLAN separation.

The tag is maintained also for the new flows generated as a consequence of

the reception of tagged packets. Further information can be found in network

functions’ manuals, e.g., https://techlib.barracuda.com/bwf/deplyvlan.
‖Actually, the FID is modified to switch source address and transport ports

with the destination ones, to match the downstream flow.

Figure 3 shows a chain example and the switches’s forward-

ing entries generated to implement such chain for a network

flow, in the case of a single classifier deployment. The entries

are expressed in an OpenFlow-like format, with a match part,

which identifies the flow, and an action part, which speci-

fies the actions that should be applied to the matched packets.

A few details can be captured looking at these entries. First,

notice that after a function, the packet’s Ethernet source is

rewritten to the function’s MAC address. This rewriting is

required to guarantee the correct SGi-LAN’s MAC learning.

Second, when flows are received from an opaque function, the

flow’s direction is detected looking at the destination MAC

address. We assume that any opaque function is configured

to always use IGW and PGW as forwarding gateways for

the upstream and downstream directions, respectively.9 Thus,

if the value is the IGW’s MAC address, then the direction

is upstream; if the value is the PGW’s MAC address, the

direction is downstream.

6 EVALUATION

This section describes a CATENAE’s proof of concept imple-

mentation and its evaluation.

Prototype. We implemented the SFC controller on top of

Ryu.** The core traffic steering algorithm is implemented in

less than 100 lines of python code. We use OpenvSwitch

(OVS) as VNFs’ switches, and OpenFlow as protocol for

the switches configuration. We emulate VNFs running either

click32 or node.js in Linux containers. Finally, we imple-

mented HSwitch by combining a NEC PF5240 OpenFlow

switch with a server running OVS. The server runs also a

user space program, which implements the microflow caching

logic. In all the tests, the SFC controller runs on a single core

of an Intel i5-2540M CPU @ 2.60GHz, using the Python 2.7.3

interpreter shipped with the Ubuntu 12.04.5 LTS distribu-

tion. OpenvSwitch (v. 2.3) and VNFs instances run on servers

equipped with an Intel CPU E31220 (4 cores @ 3.10GHz).

**http://osrg.github.io/ryu

BIFULCOET AL. 9 of 14

Number of chains. CATENAE generates new MAC

addresses to support opaque functions. It is unlikely to define

a number of chains that could consume the entire MAC

address space; however, there is an actual limitation on

the number of distinct MAC addresses one can use in an

Ethernet network. In fact, Ethernet switches have limited

memory to store the associations (address ↔ switch’s port)

generated during the MAC learning process.33 For instance,

consider chains that include 4 opaque functions on aver-

age (excluding the NAT function at the end, for which no

MAC address is generated), and assume that a switch can

learn 100k associations (e.g., this is the case of the Broad-

com Trident switching chip33). In this case, the system could

support 25k chains (actually slightly less, considering that

some MAC addresses are required for, e.g., physical servers

and VNFs). Also, each opaque function can be traversed by

4,095 chains at most, since VLAN tags are used to corre-

late function’s entering and exiting flows. While this is a

strict limitation, one should consider our initial assumption of

supporting VNFs in the number of thousands and notice that

the same chain may be applied to several network flows. In

fact, operators typically define a single chain for a group of

users (e.g., premium users) or services (e.g., web traffic). Fur-

thermore, the actual total number of possible distinct chains

is perhaps limited to only few thousands in practice. In fact,

consider the case in which a user can pick her services out of

a bucket of 10 possible services. If the operator will define

a predefined order for the application of such services, such

as, anomaly detection is applied before the web proxy, only

1,024 distinct chains could be defined (i.e., 210 chains, since

each function can be either included or not). Finally, notice

that there is no such limitation when dealing only with trans-

parent functions. In such cases, CATENAE does not need

to generate any additional MAC address. Moreover, if mul-

tiple opaque functions are connected to the same switch,

no additional MAC addresses are generated. With K rep-

resenting the average number of chain’s functions attached

to the same switch and recalling that after the first opaque

function all the remaining chain’s functions are handled as

opaque ones, in Figure 4, we show the number of required

MAC address for a chain’s implementation. Notice that an

early positioning of an opaque function requires more MAC

addresses, while the colocation of functions reduces such

requirement.

Number of flows. The total number of flows supported by

the system defines the number of supported users and how

granular their policies can be. CATENAE assigns flows to

chains performing classification at the SDN switches. The

switch’s entries are installed in advance, when a chain is first

configured; thus, a switch has to host the entries for all the

flows that may traverse it. The number of forwarding entries

required to configure a flow in CATENAE scales linearly with

the number of functions contained in the chain assigned to the

flow. In particular, transparent and opaque functions require 2

and 4 entries each, respectively, per flow. Because we rely on

software switches (HSwitch also includes a software switch)

we can easily scale to millions of entries per switch. Assum-

ing that an entry requires 50 B of memory (including all

the header values34 and rewriting actions), storing 10˜million

entries requires 500 MB of RAM. Such numbers should be

sufficient to support millions of users, even considering sev-

eral policies per user, e.g., distinct chains per users and per

user’s flows carrying web, voice, video, etc. Also, notice that

per flow entries are required only at the classifier and when

dealing with transparent functions. In fact, flows that traverse

the same chain are identified in an aggregated manner after

an opaque function (i.e., they share the same generated MAC

address value).

Configuration time. The system configuration time

depends on the number of entries the SFC controller has to

install. The number of entries scales with the product of the

number of flows and number of functions per flow’s chain.

Our SFC controller prototype is developed in python and can

send only about 2,200 entry configuration messages per sec-

ond, limiting the flow configuration performance. Figure 5

shows the rate of flow configurations per second, for chains of

lengths between 2 and 5 functions, when functions are either

all transparent (but the last one, which is anyway a NAT) or

FIGURE 4 Number of required MAC address for the implementation of a chain, when varying the number of chain’s functions and the position of first

opaque function in the chain, for different values of K. Where K is the average number of chain’s functions attached to the same switch

10 of 14 BIFULCOET AL.

FIGURE 5 Service function chaining controller throughput in configured flows/s (bars) and generated switch’s entries/s (lines)

all opaque. To confirm that this poor performance is a lim-

itation of the Ryu-based implementation, we reimplemented

the core algorithm of the SFC controller using the faster Bea-

con controller.35 This second implementation achieved, on the

same hardware, a flow configuration rate of more than 16k

flows per second, in case of chains with 5 opaque functions.

Flow forwarding delays. Forwarding entries in CATE-

NAE are installed beforehand; thus, no delay is introduced

by the traffic steering method, even when new flows are ini-

tiated. This is an advantage when compared to alternative

solutions (e.g., these studies8,21) that may instead introduce

delays on (few) flows’ packets. Also, notice that packets pro-

cessed by HSwitch may have slightly higher delays when the

corresponding forwarding entry is hosted in the HSwitch’s

software layer. However, the additional delay is typically

in the microsecond time scale, being comparable to that of

any other software switch. Thus, even in this last case, the

introduced forwarding delay is usually negligible.

Overheads. It is well known that tunneling protocols

increase the cost of processing packets at VNFs’ switches36

and VNFs themselves.8 Furthermore, it is expected that the

average packet size in mobile networks will decrease37 to

384 B in future. For some tunneling technologies, such as

VXLAN, this would mean the introduction of more than 14%

overhead of on wire transferred bytes (54 B are required for

VXLAN encapsulation over IPv4). CATENAE does not use

any extra header in the packets, avoiding these overheads,

which are common to other solutions (e.g., NSH11).

Data plane scalability. The main CATENAE’s bottlenecks

for the system’s data plane scalability are the classifiers. In

fact, the servers running SDN switches and VNFs, which also

handle data plane traffic, could be increased in number to

scale with the offered load. Scaling the u-classifier, instead,

would require the introduction of additional components, such

as load balancers, between the PGW and the u-classifier.

Such components would increase the deployment complexity

of CATENAE and work against our aim of minimizing the

impact on the legacy infrastructure. Likewise, the d-classifier,

when present and implemented using HSwitch, may provide

limited forwarding throughput if the implemented offloading

algorithm is not effective.

Therefore, we built a trace-driven simulator for the clas-

sifiers, to analyze their performance under different traffic

loads. We validated our simulator by comparing the reported

performance with the one measured with our prototype, when

running a small scale experiment with synthetic traffic. The

validation test shows that for relevant performance metrics,

such as the system’s throughput, the simulator reports values

with a general difference below 1% from those measured on

the real system.

Lacking access to real traffic traces, we extracted rele-

vant traffic properties from these studies17,21 and designed a

flow-level trace generator to feed our simulator. The gener-

ated traffic trace reproduces the distributions of flow sizes and

rates, for the network traffic seen at the PGW, as extracted

from this 1 study.17 Fixing these parameters, we derive cor-

responding flow durations. As a correctness check, we verify

that the CDFs of the generated flow durations as well as the

flow’s correlation coefficients between size, rate, and dura-

tion match the ones reported in this 1 study.17 The dynamics

of the network flows, e.g., flows arrival rate and number of

concurrent flows per second, are extracted from this 1 study,21

which provides base station’s statistics of average active users

and data connections created per second. As a last check, we

compared the numbers of concurrent flows reported in this 1

study17 with the numbers counted in our trace. Here, notice

that the numbers of concurrent flows in our trace depend both

from the generated flow durations, computed earlier, and the

flows dynamics reported in this 1 study.21

We fed our simulator with the generated traffic trace, to

verify if the classifier and HSwitch were able to handle the

offered load with zero packet loss. Notice that in the scenario

presented in this 1 study,17 the PGW is connected to 22 base

stations and handles an aggregated traffic of less than 1 Gbit/s.

Considering an average packet size of 512 B,37 the system

has to handle ∼ 0.23 million packets per second (Mpps).

We configured the simulator to cap the software switch for-

warding performance at 1 Mpps. This is a very conserva-

tive assumption, since current software switches can forward

several Mpps.23,38 For HSwitch simulation, we assumed the

hardware switch could host 100k microflow entries in its for-

warding table. Also, we assumed that it could sustain a rate

BIFULCOET AL. 11 of 14

FIGURE 6 U-classifier and HSwitch scalability when increasing the number of base stations and the aggregated throughput handled by the packet data

network gateway

of 700 entry installation/s. Both values are slightly below

the actual performance of the NEC PF5240.39 With this con-

figuration, we simulated 30 minutes of system operations,

generating 4.6M flows, in which the u-classifier and HSwitch

achieved zero packet loss, i.e., they did not become over-

loaded with the provided workload.

Considering that a 10x increase in load is expected in

2014–201940 which would correspond to an aggregated

throughput of ∼ 10 Gbit/s in our simulation, we decided to

scale the workload to match such numbers. Thus, we per-

formed new simulations to push the system to a corner case

and understand its limits. We scaled the offered load in 2

directions: we increased the number of base stations con-

nected to the PGW and the per-flow load. Figure 6 shows

the results, plotting the points after which an increase in any

of the 2 directions would introduce packet drops. The num-

ber of base stations affects the rate of new flows created per

second as well as their total number (with 40 base stations,

we create up to 8.6M flows). This may impact the distribu-

tion of the system load peaks, which in turn impacts HSwitch

since only 700 flows per second can be offloaded to hardware.

Here, as expected, a smarter caching algorithm, like heavy hit-

ters (with threshold value of 43 pps), can increase the system

scalability. The u-classifier, instead, is not influenced by the

rate of incoming flows, having a software cache that can be

updated fast.

Our test results show that the u-classifier can handle up to

29 Gbit/s of aggregated PGW’s throughput: a value 3 times

bigger than the 2019’s forecast. In fact, the classifier han-

dles only the upstream flows, which in the worst case account

for the 15% of the overall throughput, in our trace. That is,

4.35 Gbit/s, which is about 1 Mpps if the packet size is 512 B.

The performance of HSwitch is instead influenced by the

adopted offloading algorithm. When scaling to 40 base sta-

tions and more than 8M flows, HSwitch can handle only about

8 Gbps of traffic if the FIFO offloading strategies are imple-

mented. The reason is that the system is subject to a significant

cache trashing effect, i.e., the flows that are cached from in

the HSwitch’s hardware layer do not persist for long time in

the cache. This is a combined effect of the big number of

flows and the way the algorithms select them. In fact, in the

FIFO algorithms case, a flow is moved to the hardware layer

just in dependence of the time in which it appears in the net-

work. When using a smarter algorithm that tries to select the

flows to cache, in dependence of their contributed through-

put, HSwitch performance improves, enabling the system to

handle up to about 22 Gbps with 40 base stations.

7 DISCUSSION

This section discusses the implication of our design choices

and provides a few consideration stemming out from our

evaluation results.

Legacy infrastructures. CATENAE matches our original

aim of minimizing the impact on legacy infrastructures in sev-

eral ways. First, it can be seamlessly deployed in the LTE

architecture. When using the single classifier configuration,

CATENAE requires only the installation of software compo-

nents in the general purpose server attached to the SGi-LAN

(cf Section 3), and without requiring any architectural change.

This is a unique feature when compared to the related work

presented earlier. When using also a d-classifier, there is

still only one single hardware switch to deploy in the infras-

tructure, while all the previous considerations remain valid.

Second, it does not use any tunneling protocol, be it an L2

tunneling protocol, such as VLAN, or a higher level ones,

such as VxLAN. This provides a number of advantages, and

it is another clear distinction point in comparison with the

previously mentioned related work. When considering tun-

neling protocols at the higher network layers, the introduced

processing overheads in the servers may be high, unless hard-

ware offloading mechanisms are implemented in the network

interface cards (NICs). While it is fair to expect that the most

successful protocols, e.g., VxLAN, will be soon offloaded by

the majority of the NICs, this is still not the case.41 Thus, we

expect CATENAE will be more efficient in using the server’s

processing power in the next few years, when servers will be

12 of 14 BIFULCOET AL.

facing a limited tunneling offloading support. In the case of

protocols such as VLAN, for which the offloading is already

well established in the NICs, CATENAE provides perhaps

an even bigger advantage. In fact, VLAN-like protocols are

extensively used to perform logical network separation by a

number of systems. In effect, as it became clear in several dis-

cussions with network operators, using e.g., VLANs, is in most

of the cases not an option, since it would require very com-

plex, time-consuming, and error-prone integrations with the

systems that deal with the VLANs management. With CATE-

NAE, the coordination with such systems is not required; in

fact, CATENAE operations deal with VLANs only on the

link between software switches and VNFs. Third, while other

solutions require modifications to the network functions,8,11

CATENAE supports current network functions with no mod-

ifications, leveraging features that are already extensively

used, such as VLAN separation. That is, VNFs are considered

as black boxes, helping in decoupling the deployment and

configuration of network functions from their composition in

a chain.42 Finally, CATENAE nicely integrates with systems

that provide the VNFs deployment, such as OpenStack, which

in turn can perform, e.g., optimal VNFs placement.

Hardware network functions. While CATENAE seam-

lessly supports software legacy functions, hardware network

functions can be only supported if directly attached to a SDN

switch. Hence, 2 options are actually viable. In a first case, the

hardware function may be attached back-to-back to a server

running a software switch. However, the network function

may overload the software switch, which, unlike the case of

the u-classifier, should handle both upstream and downstream

flows. An alternative solution is to deploy a hardware SDN

switch. In this second option, a limitation could be the size of

the hardware switch forwarding table. In fact, the issue in this

case is the same; we faced with the design of the d-classifier;

hence, a switch technology like the one implemented for

HSwitch could be used to address it. Anyway, please notice

that this is a common issue for all the solutions presented in

Section 2; furthermore, unlike other solutions that modify L3

headers,43 CATENAE only rewrites MAC addresses, which is

an operation commonly supported in hardware switches.

Classification. In our proof of concept prototype, we

implemented the u-classifier using a software OpenFlow

switch. Such a decision may limit the ability of CATENAE

to perform complex classification functions that may require

Deep Packet Inspection. However, please notice that CATE-

NAE design does not limit the options for the implementation

of a more complex classifier, provided that it exposes an

SDN-like interface for configuring the MAC address rewrit-

ing operations. In effect, in the evaluation of Section 6,

we performed our data plane scalability simulations using a

particularly low forwarding capacity for the classifier, with

the purpose of evaluating the system in the case in which

the classifier is performing complex operations. In fact, the

1-Mpps throughput cap is better suited for a complex net-

work function,14 while a software switch is usually capable of

forwarding packets in the order of 10 Mpps.38 Similar consid-

erations can be applied for the d-classifier and our HSwitch

implementation. In fact, the HSwitch’s software layer could

be improved to implement a Deep Packet Inspection engine

instead of a simple software switch.

Traffic characteristics. The HSwitch implements an

offloading algorithm to move flow entries to hardware and

offload the software switch. Of course, the characteristics

of the network traffic have an important influence on the

efficiency of the offloading algorithm. In particular, a very

skewed traffic distribution, with a few heavy hitters contribut-

ing most of the traffic and a vast majority of very small

flows, is the best case for our classifier. In fact, only the few

entries that handle heavy hitters have to be moved to hard-

ware. Moreover, such heavy hitters are likely to stay active

for longer time (and therefore, they would stay longer in hard-

ware), which reduces the cache’s churn rate. On the other

hand, when the traffic distribution does not have flows that are

particularly heavier than others, our classifier would hardly

scale its throughput. In such a case, the hardware forward-

ing table would quickly become full with entries. Still, the

throughput contributed by the flows handled by such entries

would be modest and will not offload enough traffic from

the software switch. Furthermore, smaller flows may increase

the churn rate, requiring more often the movement of entries

from software to hardware. However, the rate to move entries

to hardware is usually rather slow in current hardware SDN

switches, which would further prolong the time in which a

flow selected for offloading stays in the software switch.

Metadata. CATENAE does not support the delivery of

metadata to the network functions. For instance, a user’s

wireless link quality information has to be delivered to the

network functions that may need it, e.g., transcoders, using

out-of-bound channels. Other solutions support metadata

delivery requiring modifications to the VNFs.8,11

Other use cases. While we presented CATENAE for the

application to the mobile networks case, the system can be

applied also to other networks that rely on L2 (Ethernet) for-

warding. However, it should be clear that a few limitations

apply, since CATENAE’s assumptions have to hold. In par-

ticular, it is required that network flows are initiated in only

one direction. Furthermore, CATENAE can deal with deploy-

ments of few thousands network functions. Scaling to bigger

numbers would require a redesign of the system’s traffic steer-

ing technique. Finally, the aforementioned impact of traffic

characteristics, when using a d-classifier, should also be taken

into account to verify that the classifiers can scale with the

offered workload.

8 CONCLUSION

We presented CATENAE, an SFC system for the SGi-LAN.

CATENAE can be deployed on legacy infrastructures, intro-

ducing effective SFC without paying the overheads of

BIFULCOET AL. 13 of 14

additional packet header fields but still scaling to provide fine

grained policies for millions of network flows. Given that

service function chain configurations are performed proac-

tively and do not require any dynamic action on the data

plane, the only CATENAE’s throughput bottlenecks are in the

classifiers used to classify upstream and downstream traffic.

We presented both an architectural solution and a techno-

logical solution to address the 2 cases, respectively. For the

upstream direction, we ensure only upstream traffic is han-

dled by the upstream classifier. Given that upstream traffic

typically contributes just the 10% of the overall system work-

load, this allows us to support the traffic growth expected in

the midterm using a state of the art software switch as clas-

sifier. For the downstream direction, instead, we presented

HSwitch, a hybrid software/hardware classifier based on com-

modity SDN switches. HSwitch caches the heavier flows in its

hardware layer, while the software layer guarantees the pos-

sibility to install the big number of flows required to support

the CATENAE’s traffic steering method.

CATENAE lacks some advanced features provided by

related work, e.g., support for network functions’ metadata.

However, the lack of such features is traded with the possibil-

ity of deploying the system today, on legacy infrastructures.

In effect, our design experience shows that those desired fea-

tures may be still lacking in other system’s components as

well. For example, network functions do not support metadata

exchange yet. Thus, CATENAE provides support for service

function chaining with today’s technologies, while the men-

tioned advanced features could be eventually introduced as

the legacy infrastructure gradually evolves, when they are

actually needed.

As a final remark, our experience suggests that a design tai-

lored to the problem can help in solving issues that otherwise

would require much more expensive solutions. Notice that,

in the past, highly-specialized solutions in networking were

not considered economically convenient. Traditionally, a net-

work operator would buy an expensive hardware box, which

was required to support a number of different deployment

scenarios, since its monolithic design would not allow for

modifications. Today, we have to observe that the landscape is

considerably changed with the introduction of software-based

networks. In fact, the “swiss-knife” solution is not required

anymore since the solution now runs on a programmable

infrastructure. That is, the solution is not a monolithic design

that cannot be changed anymore; instead, it can evolve over-

time to meet the changing requirements and constraints.

ACKNOWLEDGMENT

This work has been partly funded by the EU in the context of

the “FP7 ITN CleanSky” project (Grant Agreement: 607584).

REFERENCES

1. Bifulco R, Matsiuk A, Silvestro A. Ready-to-deploy service function chain-

ing for mobile networks. IEEE Netsoft; Seoul, Korea, 2016.

2. Honda M, Nishida Y, Raiciu C, et al. Is it still possible to extend tcp? ACM
IMC ’11; Berlin, Germany, 2011.

3. Wang Z, Qian Z, Xu Q, Mao Z, Zhang M. An untold story of middleboxes in

cellular networks. ACM SIGCOMM ’11. Toronto, On, Canada; 2011.

4. ETSI. Network functions virtualisation - white paper.

5. IETF. Service Function Chaining working group. SFC.

6. Mehraghdam S, Keller M, Karl H. Specifying and placing chains of virtual

network functions. IEEE CloudNet, Luxembourg; 2014.

7. Qazi ZA, Tu CC, Chiang L, et al. Simple-fying middlebox policy enforce-

ment using sdn. ACM SIGCOMM ’13. Hong Kong, China; 2013.

8. Fayazbakhsh SK, Chiang L, Sekar V, Yu M, Mogul JC. Enforcing

network-wide policies in the presence of dynamic middlebox actions using

flowtags. USENIX NSDI ’14. Seattle, WA; 2014.

9. Blendin J, Ruckert J, Leymann N, Schyguda G, Hausheer D. Position paper:

Software-defined network service chaining. IEEE EWSDN ’14. Budapest,

Hungary; 2014.

10. Zhang Y, Beheshti N, Beliveau L, et al. Steering: A software-defined net-

working for inline service chaining. IEEE ICNP ’13. Göttingen, Germany;

2013.

11. Quinn. Network Service Header. draft-quinn-sfc-nsh-07; 2015.

12. Boucadair M, Jacquenet C, Jiang Y, Parker R, Kengo. Requirements

for service function chaining (sfc). Internet-Draft draft-boucadair-sfc-

requirements-06, IETF Secretariat; February 2015.

13. Levin D, Canini M, Schmid S, Feldmann A. Incremental sdn deployment in

enterprise networks. SIGCOMM. Hong Kong, China: ACM; 2013.

14. Martins J, Ahmed M, Raiciu C, et al. Clickos and the art of network function

virtualization. USENIX NSDI ’14. Seattle, WA; 2014.

15. Vissicchio S, Vanbever L, Rexford J. Sweet little lies: Fake topologies for

flexible routing. ACM HOTNETS’14. Los Angeles, California, USA; 2014.

16. Xu X, Jiang Y, Flach T, et al. Investigating transparent Web proxies in cellular

networks. PAM. Springer; 2015.

17. Huang J, Qian F, Guo Y, et al. An in-depth study of LTE: Effect of net-

work protocol and application behavior on performance. ACM SIGCOMM
’13. Hong Kong, China; 2013.

18. Quinn P, Nadeau T. Problem statement for service function chaining. RFC

7498; April 2015.

19. Halpern J, Pignataro C. Service function chaining (sfc) architecture. RFC

7665; October 2015.

20. McKeown N, Anderson T, Balakrishnan H, et al. Openflow: enabling inno-

vation in campus networks. SIGCOMM Comput Commun Rev. 2008.

21. Jin X, Li LiErran, Vanbever L, Rexford J. Softcell: Scalable and flexi-

ble cellular core network architecture. ACM CoNEXT ’13. Santa Barbara,

California; 2013.

22. Richter P, Allman M, Bush R, Paxson V. A primer on ipv4 scarcity. ACM
SIGCOMM Comput Commun Rev. 2015;45(2):21–31.

23. Pfaff B, Pettit J, Koponen T, et al. The design and implementation of open

vswitch. USENIX NSDI ’15. Oakland, CA; 2015.

24. Kang N, Liu Z, Rexford J, Walker D. Optimizing the "one big switch"

abstraction in software-defined networks. ACM CONEXT’13. Santa Barbara,

California; 2013.

25. Dusi M, Bifulco R, Gringoli F, Schneider F. Reactive logic in

software-defined networking: Measuring flow-table requirements. Pro-
ceedings of the 5th International Workshop on Traffic Analysis and
Characterization (TRAC). Cyprus; 2014.

26. Lazaris A, Tahara D, Huang X, et al. Tango: Simplifying SDN programming

with automatic switch behavior Inference, Abstraction, and Optimization.

ACM CoNEXT’14. Sydney, Australia; 2014.

27. Bifulco R, Matsiuk A. Towards scalable sdn switches: Enabling faster flow

table entries installation. ACM SIGCOMM. London, United Kingdom; 2015.

28. Katta N, Rexford J, Walker D. Infinite cacheflow in software-defined net-

works. ACM SIGCOMM HotSDN ’14. Chicago, IL; 2014.

29. Open Networking Foundation. Openflow specification 1.4.0.

14 of 14 BIFULCOET AL.

30. Sarrar N, Uhlig S, Feldmann A, Sherwood R, Huang X. Leveraging

zipf’s law for traffic offloading. ACM SIGCOMM Comput Commun Rev.

2012;42(1):16–22.

31. Hendriks L, De R, Schmidt O, et al. Assessing the quality of flow measure-

ments from openflow devices. Proceedings of the 8th Traffic Monitoring and
Analysis Workshop, TMA’16. Louvain La Neuve, Belgium; 2016.

32. Kohler E, Morris R, Chen B, Jannotti J, Kaashoek MF. The click modular

router. ACM Trans Comput Syst. 2000;18(3): 263–297.

33. Stephens B, Cox A, Felter W, Dixon C, Carter J. Past: Scalable ethernet for

data centers. ACM CoNEXT ’12. Nice, France; 2012.

34. Mogul JC, Tourrilhes J, Yalagandula P, et al. Devoflow: cost-effective flow

management for high performance enterprise networks. Hotnets-X 10th ACM
Workshop on Hot Topics in Networks. Monterey, CA, USA; 2010.

35. Erickson D. The beacon openflow controller. ACM SIGCOMM HotSDN ’13.

Hong Kong; 2013.

36. Kawashima R, Muramatsu S, Nakayama H, Hayashi T, Matsuo H. Sclp:

Segment-oriented connection-less protocol for high-performance software

tunneling in datacenter networks. IEEE NetSoft ’15. University College

London, London; 2015.

37. Stoke Inc. LTE equipment evaluation: Considerations and selection criteria;

2012.

38. Honda M, Huici F, Lettieri G, Rizzo L. mSwitch: A highly-scalable, modular

software switch. ACM SOSR ’15. Santa Clara, CA; 2015.

39. NEC. Programmableflow pf5240 switch.

40. Cisco. Visual networking index: Global mobile data traffic forecast update

20142019 white paper.

41. Guenender S, Barabash K, Ben-Itzhak Y, et al. Noencap: Overlay network

virtualization with no encapsulation overheads. ACM SOSR. Santa Clara,

CA; 2015.

42. John W, Pentikousis K, Agapiou G, et al. Research directions in network

service chaining. IEEE SDN4FNS ’13. Trento, Italy; 2013.

43. Manetti V, Di Gennaro P, Bifulco R, Canonico R, Ventre G. Dynamic

virtual cluster reconfiguration for efficient iaas provisioning. Proceedings
of the 2009 International Conference on Parallel Processing, Euro-Par’09.

Springer-Verlag, Berlin, Heidelberg; 2010:424–433.

How to cite this article: Bifulco R, Matsiuk A,

Silvestro A. CATENAE: A Scalable service

function chaining system for legacy mobile

networks. Int J Network Mgmt. 2017;e1965.

https://doi.org/10.1002/nem.1965

AUTHORS BIOGRAPHIES

Roberto Bifulco is a researcher in telecommunications

with a focus on programmable networks. His main con-

tributions are in the fields of Scalability and Security

of Software-defined Networks, high-performance Network

Function Virtualization, and programmable networks design.

Since 2012, Roberto joined the NEC Laboratories in Hei-

delberg, Germany, where he is a Senior Researcher. Earlier,

Roberto worked as consultant for small technological enter-

prises and start-ups. During his career, Roberto has taken part

to several research projects funded by the European Com-

mission, such as FP7 ONELAB2, FP7 MPLANE, and H2020

BEBA. He holds a PhD from University of Napoli “Federico

II”.

Anton Matsiuk is a Research Scientist in the SDN research

group of the NEC Laboratories Europe. Before joining NEC,

he worked in telecommunications and networking areas start-

ing from operation and administration tasks to design and

implementation of network management applications for

large-scale ISP-operated networks. He holds a Dipl.-Ing.

in Telecommunications (2006) and a M.Eng. in Informa-

tion Technology (2014) as well as industry-specific certi-

fications and awards. His current research interests include

SDN-enabled infrastructures for industrial and IoT domains

as well as SDN performance, scalability, and programmabil-

ity challenges.

Alessio Silvestro received both his Bachelor and Mas-

ter degrees in Computer Engineering from the University

Federico II, Naples, Italy. Alessio joined the NEC Labora-

tories Europe in 2015, in the context of the EU FP7 ITN

CleanSky project, as Early Stage Researcher. His research is

mainly focused in the fields of Software-defined Networking

(SDN), Network Function Virtualization (NFV) and Cloud

Computing.

http://dx.doi.org/https://doi.org/10.1002/nem.1965

	CATENAE: A scalable service function chaining system for legacy mobile networks
	Abstract
	Introduction
	Background andxmltex ?> Related Work
	Mobile networks
	Service function chaining inxmltex ?> standards
	Service Function Chaining inxmltex ?> research

	Design
	Architecture
	Two-classifier configuration
	Single classifier configuration
	Deployment

	Classifiers
	d-classifier design
	Offloading algorithms
	Learning packet headers

	Traffic steering
	Evaluation
	Discussion
	Conclusion
	References

