
Policy Engine as a Service (PEaaS): An Approach to
a Reliable Policy Management Framework in Cloud

Computing Environments
Faraz Fatemi Moghaddam*,†, Philipp Wieder*, Ramin Yahyapour*,†

*Gesellschaft fur wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Göttingen, Germany
†Institute of Informatics, Georg-August-Universität Göttingen, Göttingen, Germany

Email: {faraz.fatemi-moghaddam, ramin.yahyapour, philipp.wieder}@gwdg.de

Abstract—Security challenges are the most important obstacle
for advancement of IT-based on-demand services and cloud
computing as an emerging technology. In this paper, an attribute
based policy management engine has been introduced to enhance
the reliability of managing different policies in clouds and to
provide standard and also dedicated security levels (rings) based
on capabilities of the cloud provider and requirements of cloud
customers. Accordingly, policy database has been designed based
on capabilities and policy engine establishes appropriate relations
between policy database and SLA engine to provide security terms
as a service. Furthermore, policy match maker and reasoning
engine have been designed for syntactic and semantic analysis of
security requests based on three-levels of protection ontology to
enhance the process of policy management in clouds.

Keywords—cloud computing, security, policy management,
policy engine, semantic policy analysis, protection ontology.

I. INTRODUCTION
 Cloud computing technology is an emerging paradigm that
uses the concepts of virtualization, processing power,
distribution and connectivity to store and share IT-resources
over a broad network. Despite the considerable benefits of this
technology [1], there are some information policy concerns
such as security, privacy and access control that have affected
the reliability of cloud-based environments [2]. One of the most
challenging issues regarding to the information policy concerns
is to provide an appropriate level of security for the stored data
in cloud storages. In fact, each individual customer needs to be
granted reliable security level(s) based on defined details in
SLA [3].

 These security levels might be common for all customers or
independent based on the data sensitivity. Applying a single
security level for all stored data is not efficient and takes
considerable processing power to manipulate sensitive and also
non-sensitive data. On the other hand, managing multiple
security levels is the most challenging concern in multi-level
policy models and needs an appropriate and efficient algorithm.
The most popular approach to express high-level security
constraints is based on the usage of metadata and languages for

the specification of security policies [4]. The main aim of this
paper is to propose an attribute-based policy management
model to enhance the process of managing security policies in
cloud computing environments. Accordingly, several security
specifications and policies are defined to match and manage the
most appropriate security level based on data sensitivity.

II. RELATED WORKS
 There are several policy management models that use
metadata and language for specification of security policies.

 IETF [5] is a defined framework includes definition language,
policy model, sets of policy technologies and a policy
architecture meta model to represent, manage, share and reuse
policies and policy information in a vendor-independent,
interoperable and scalable manner. IETF model mostly focuses
on network policies to control IP-Security and Quality of
Service (QoS) [6]. One of the most challenging efforts in this
model is to map IETF models into specified implementation
schema [7] such as Web Based Enterprise Management
(WBEM) [8] or Directory Enabled Network (DEN) [9].

 Imperial College developed an object oriented policy
management framework (Ponder) [10] that contains general
architecture and policy deployment model and various
extensions for access control and QoS management. Ponder
allows users to define events, constraints, constants and other
reusable elements that can be part of many policies and allows
the instantiation of typed policy specification to support
parameterization of policies. However, the lack of generality is
the main drawback of Ponder [7]. In fact, Ponder uses several
basic policy types and composite policy types each with
different syntax.

 KAoS is an ontology language uses the Web Ontology
Language (OWL) [11] to allow users to define policies to grant
predictability and controllability of agents and distributed
systems such as grid computing and multi-agent systems [12].
Four main types of policies are defined in KAoS: Positive-
Authorization, Negative-Authorization, Positive-Obligation
and Negative-Obligation and similar to IETF, each policy is

associated with management properties. KAoS provides two
sets of services: Domain Services (that enable the hierarchical
grouping of users and computational entities to administrate
policies easier) and Policy Services (that is based on
specification, conflict resolution, management and policy
enforcement) [13].

 In 2002, HP labs proposed a policy framework (Rei) [14] to
provide an independent domain policy specification based on
deontic constructs and F-OWL reasoned [15] and to allow
several specification policies (i.e. right, prohibition,
dispensations and obligations). Rei supports two main meta
policies: Default Meta Policy (to describe the default behavior
of the policy) and Meta-Meta Policy (to allow the setting of
precedencies based on default meta policies).

 Choi et al. [16] proposed Ontology-Based Access Control
Model (Onto-ACM) by using Context-aware Role-Based
Access Control (C-RBAC) concepts [17] to provide a semantic
analysis model that can address the difference in the permitted
access control between service providers and users. Onto-ACM
uses context analysis process, user authentication analysis,
access context analysis, Ontology handling and security process
interface as the main requirements of a fine-granted access to
enhance the efficiency policy management and grant a role
inheritance by both system administrator and user (i.e. data
owner) and protect malicious information leakage. However,
the lack of simultaneous syntactic and semantic matching of
security policies based of cloud computing characteristics is the
most important drawback of this model.

 Di Modica and Tomarchio (2015) [18] suggested an approach
that leverages on the semantic technology to enrich
standardized security policies with an ad-hoc content and to
enable machine reasoning which is then used for both the
discovery and the composition of security-enabled services. In
this model, requirements and capabilities for cloud customers
and providers are defined within policies which are adopted to
policy intersection mechanism provided by WS-Policy [19].

 WS-Policy is a recommended framework from W3C for
policy specification of Web Services that includes policies that
are defined as a collection of alternatives contain assertions to
specify well-established characteristics for using selection of
various services (e.g. requirements, capabilities or behaviors).

 In overall, the main concern of described models is the
discovery, interoperability and compatibility of security
requirements based on characteristics of current distributed
networks and cloud-based environments. Hence, this paper uses
the concepts of security ontology to define reliable and
interoperable security policies in virtualized infrastructure and
to grant syntactic and also semantic matching of security
policies.

III. PROPOSED ARCHITECTURE
 The architecture of our proposed framework is based on four
main components that have been shown in figure 1: Policy

Engine (PE), Policy Database (PD), Policy Match Maker
(PMM) and Reasoning Engine (RE). In the suggested
framework, a cloud service provider offers two types of security
rings to PD based on defined or potential policies:

Fig. 1. Basic Architecture of our Proposed Model (icon by [20])

• The first type includes sets of standard policies in package
form. In fact, the service provider defines some standard
security rings and offers them to customer to select based
on desired security level and data sensitivity.

• The second type includes sets of potential security policies
based on capabilities of service provider. In fact, several
security policies (e.g. authentication, obligation,
cryptography algorithms, etc.) are introduced to let the
customer to create a dedicated custom security ring based
on the requirements.

Fig. 2. Security Rings Types in our Proposed Model

 PD would be updated periodically based on new or revoked
capabilities of service provider and has mutual interaction with
SLA engine regarding to these updates.

 The main component that is responsible for policy matching
and other policy-based procedures in this framework is Policy
Engine. PE receives service requests and requirements from
cloud customer by API. These requests are received as a
selection of existing policy packages or customize parameters
based on users’ requirements. In the first case (Algorithm 1),
the request is processed in PE and is sent to PD for checking the
updates, availability, and other specifications in PD.

Fig. 3. Relations between Defined Components in Proposed Model

After receiving the confirmation from PD, PE applies for
agreement details (including pricing options, security
algorithms, other required items) from SLA engine and sends
the response to user for final confirmation (Fig. 3). After this
confirmation, policy application is sent to scheduler for
processing current data or uploading new data. In the second
case, cloud customer requests a dedicated security ring based
on potential security policies according to the capabilities of the
service provider. Typically, the service provider updates list of
potential security policies in PD according to the new or
revoked capabilities and based on these updates, the SLA
details are changed. The process of requesting dedicated
security rings is done based selection of potential security
mechanism by cloud customer according to the requirements,
syntactic checking and match making by PMM and updating
necessary changes, and also semantic analysis by RE for

simultaneous syntactic and semantic analysis. Algorithm 2
shows the process of creating dedicated rings in details.

IV. PROTECTION ONTOLOGY
 The protection ontology is a defined object oriented
framework that includes potential security concepts such as
protocols, mechanism, algorithms and established connections
between them to provide an appropriate and reliable policy
management model. There are two main super classes that are
defined in this ontology: Policy Matrix and Policy Packages.

A. Policy Matrix Super Class (PMSC)
Policy Matrix Super Class is based on 3 levels of sub-classes
according to the concepts of inheritance in object oriented
designs (Fig. 4):

- Level 1 (Protocol Level): This level includes 6 main security
protocol sub-classes: Access Control, Cryptography, Key
Management, Transport, Authentication and Signature.

- Level 2 (Mechanism Level): There are several security
mechanisms for each protocol that are defined to categorize
security algorithms and provide appropriate relation between
the highest level and the lowest level of architecture.

- Level 3 (Algorithm Level): This level is the lowest level the
protection ontology that includes different security algorithms
that are provided be cloud service provider. In fact, the
capabilities of service provider are updated regarding to
availability or un-availability of security algorithms in this
level.

Algorithm 1
Selection of Standard Rings

Input: Set 𝑃: Let 𝑃	
 = {𝑝&, 𝑝(, … , 𝑝*} represents all standard policy packages.
Output: 𝐹 𝑠, 𝑃𝑃1

1

∃	
 𝑝0	
 ∈ 𝑃 ∶ 	
 𝑝0 = 𝑠𝑝&, 𝑠𝑝(, … , 𝑠𝑝3
//where 𝑠𝑝4 (𝑗 ∈ {1,2, … ,𝑚}) donates a defined Security Protocol (e.g. access management protocol, cryptography protocol,
authentication protocol, etc.) in standard policy package 𝑖.

2 𝑆𝑒𝑛𝑑	
 𝑝0, 𝑈𝑠𝑒𝑟, 𝑃𝐸 ;
//The selected policy package from user is sent to PE.

3 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	
 𝑃𝑃1	
 = 	
 𝑛𝑒𝑤	
 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟K, 𝑟𝑒𝑞, 𝑠𝑝&, 𝑠𝑝(, … , 𝑠𝑝3)
//PP1 is created as an object from Policy Package class based on selected package by user. 𝑈𝑠𝑒𝑟K and 𝑟𝑒𝑞 represent user ID and status
of request respectively.

4 𝑆𝑒𝑛𝑑	
 𝑃𝑃1, 𝑃𝐸, 𝑃𝐷 ;
//Object PP1 is sent to PD for checking availability, updates and other specifications.

5 𝐹𝑜𝑟	
 𝑖𝑛𝑡	
 𝑥 = 1; 	
 𝑥 ≤ 	
 𝑚;	
 + + 𝑥 	
 {
 𝑏𝑜𝑜𝑙	
 𝑆𝑃𝐶𝐴 = 𝐶ℎ𝑒𝑐𝑘_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃𝑃1. 𝑠𝑝Y);
 𝑖𝑓	
 𝑆𝑃𝐶𝐴	
 == 	
 𝐹𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛	
 {
 𝑃𝑃1. 𝑟𝑒𝑞	
 = 	
 𝐹𝑎𝑙𝑠𝑒;
 𝐵𝑟𝑒𝑎𝑘; }
 𝑏𝑜𝑜𝑙	
 𝑆𝑃𝐶𝑈 = 𝐶ℎ𝑒𝑐𝑘_𝑈𝑝𝑑𝑎𝑡𝑒𝑠(𝑃𝑃1. 𝑠𝑝Y);
 𝑖𝑓	
 𝑆𝑃𝐶𝑈	
 == 	
 𝑇𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	
 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑃1. 𝑠𝑝Y 	
 ; }

6 𝑖𝑓	
 𝑃𝑃1. 𝑟𝑒𝑞	
 == 	
 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	
 𝑆𝑒𝑛𝑑	
 𝑅𝐸𝑄, 𝑃𝐸, 𝑆𝐿𝐴 ;
//If all the policies and protocols are available a request is sent to SLA Engine for generating agreement and pricing details.

7 𝑆𝑒𝑛𝑑	
 𝑆𝐿𝐴abcd0ef, 𝑃𝐸, 𝑈𝑠𝑒𝑟 ;
𝑖𝑓	
 𝑆𝐿𝐴abcd0ef. 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	
 == 	
 𝑡𝑟𝑢𝑒)	
 𝑡ℎ𝑒𝑛	
 𝐹 𝑠, 𝑃𝑃1 ;
//If the SLA details (includes security services and billing) are confirmed by user, the requested policies are applied to user’s data.

Algorithm 2
Selection of Dedicated Rings

Input: Matrix 𝑃: Donate a 𝑀×𝑁×𝐾 three-dimensional matrix 𝑃 to be a feasible and potential security policies with each element 𝑝3*k
represents a security policy (𝑚 ∈ 1,2, … ,𝑀 , 𝑛 ∈ {1,2, …𝑁} and 𝑘 ∈ {1,2, …𝐾}) where M, N and K are total types of security protocols
(e.g. access, cryptography, authentication protocol, etc.), security mechanisms and total choices for each mechanism respectively.
Output: 𝐹 𝑠, 𝑃𝑃1

1 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑖𝑓	
 𝑝Yno. 𝑢𝑝𝑑𝑎𝑡𝑒pbqKbfc == 𝑡𝑟𝑢𝑒 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑡ℎ𝑒𝑛	
 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝Yno 𝑎𝑛𝑑	
 𝑢𝑝𝑑𝑎𝑡𝑒(𝑆𝐿𝐴. 𝑝Yn)}}}
//Cloud service provider periodically updates list of potential policies, supported security protocol, mechanisms and algorithms.
Moreover, the SLA details are changed regarding to the updated policy lists.

2 𝑖𝑓	
 𝑢𝑠𝑒𝑟. 𝑑𝑒𝑑𝑟𝑒𝑞 == 𝑡𝑟𝑢𝑒 	
 𝑡ℎ𝑒𝑛	

 𝑝𝑜𝑙𝑖𝑐𝑦_𝑚𝑎𝑡𝑟𝑖𝑥	
 𝑃𝑀1	
 = 𝑛𝑒𝑤	
 𝑝𝑜𝑙𝑖𝑐𝑦_𝑚𝑎𝑡𝑟𝑖𝑥(𝑀,𝑁, 𝐾);
//If cloud customer requests for a dedicated security ring, a policy matrix object is created based on all security protocols and total
choices for each protocol. The default value of all items is equal to 0.

3 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑖𝑓 (𝑝Yno. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 == 𝑡𝑟𝑢𝑒	
 &&	
 𝑢𝑠𝑒𝑟. 𝑟𝑒𝑞 == 𝑡𝑟𝑢𝑒)	
 𝑡ℎ𝑒𝑛	
 {𝑃𝑀1. 𝑥. 𝑦. 𝑧 = 1; }}}}
//The cloud customer can select desired security algorithms based on the requirements and also the availability of the algorithm. It should
be noted that each customer can select more than one choice for each security mechanism.

4 𝑆𝑒𝑛𝑑	
 𝑃𝑀, 𝑃𝐸, 𝑃𝑀𝑀 ;
//The created and updated object is sent to Policy Match Maker to syntactic matching.

5 𝑖𝑓	
 𝑃𝑀1. 𝑆𝑦𝑛 == 𝑡𝑢𝑟𝑒 	
 𝑡ℎ𝑒𝑛	
 𝑆𝑒𝑛𝑑 𝑃𝑀1, 𝑃𝑀𝑀, 𝑅𝐸 𝑒𝑙𝑠𝑒	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 𝑢𝑝𝑑𝑎𝑡𝑒	
 𝑃𝑀1. 𝑥. 𝑦. 𝑧 ; }}}	

 𝑆𝑒𝑛𝑑(𝑃𝑀1, 𝑃𝑀𝑀, 𝑃𝐸);
//If the syntactic match making is done successfully the object is sent to Reasoning Engine. Else, PMM tries to update the matrix and
send it back to PE for user’s review. The process of syntactic match making and updating the matrix is explained in section V.

6 𝑆𝑒𝑛𝑑	
 𝑃𝑀1, 𝑃𝑀𝑀, 𝑅𝐸 ;
//The checked object is sent to Reasoning Engine for semantic matching.

7 𝑖𝑓	
 𝑃𝑀1. 𝑆𝑒𝑚 == 𝑡𝑢𝑟𝑒 	
 𝑡ℎ𝑒𝑛	
 𝑆𝑒𝑛𝑑 𝑃𝑀1, 𝑅𝐸, 𝑃𝐸 𝑒𝑙𝑠𝑒	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 𝑢𝑝𝑑𝑎𝑡𝑒	
 𝑃𝑀1. 𝑥. 𝑦. 𝑧 ; }}}	

 𝑆𝑒𝑛𝑑(𝑃𝑀1, 𝑅𝐸, 𝑃𝐸);
////If the semantic match making is done successfully the object is sent to PE for creation of policy package. Else, RE tries to update the
matrix and send it back to PE for user’s review. The process of semantic match making and updating matrix is explained in section VI.

8 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒	
 𝑃𝑃1	
 = 	
 𝑛𝑒𝑤	
 𝑃𝑜𝑙𝑖𝑐𝑦_𝑃𝑎𝑐𝑘𝑎𝑔𝑒(𝑈𝑠𝑒𝑟K, 𝑟𝑒𝑞)
𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 {	

 𝑖𝑓	
 𝑃𝑀1. 𝑥. 𝑦. 𝑧 == 𝑡𝑟𝑢𝑒 	
 𝑡ℎ𝑒𝑛	
 𝑃𝑃1. 𝑠𝑝Y = 𝑝Yno; }}}
//PP1 is created as an object from Policy Package class based on dedicated package by user that is approved by PMM and RE.

9 𝑆𝑒𝑛𝑑	
 𝑃𝑃1, 𝑃𝐸, 𝑃𝐷 ;
//Object PP1 is sent to PD for checking availability, updates and other specifications.

10 𝐹𝑜𝑟	
 𝑖𝑛𝑡	
 𝑥 = 1; 	
 𝑥 ≤ 	
 𝑚;	
 + + 𝑥 	
 {
 𝑏𝑜𝑜𝑙	
 𝑆𝑃𝐶𝐴 = 𝐶ℎ𝑒𝑐𝑘_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃𝑃1. 𝑠𝑝Y);
 𝑖𝑓	
 𝑆𝑃𝐶𝐴	
 == 	
 𝐹𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛	
 {
 𝑃𝑃1. 𝑟𝑒𝑞	
 = 	
 𝐹𝑎𝑙𝑠𝑒;
 𝐵𝑟𝑒𝑎𝑘; }
 𝑏𝑜𝑜𝑙	
 𝑆𝑃𝐶𝑈 = 𝐶ℎ𝑒𝑐𝑘_𝑈𝑝𝑑𝑎𝑡𝑒𝑠(𝑃𝑃1. 𝑠𝑝Y);
 𝑖𝑓	
 𝑆𝑃𝐶𝑈	
 == 	
 𝑇𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	
 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑃1. 𝑠𝑝Y 	
 ; }

11 𝑖𝑓	
 𝑃𝑃1. 𝑟𝑒𝑞	
 == 	
 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	
 𝑆𝑒𝑛𝑑	
 𝑅𝐸𝑄, 𝑃𝐸, 𝑆𝐿𝐴 ;
//If all the policies and protocols are available a request is sent to SLA Engine for generating agreement and pricing details.

12 𝑆𝑒𝑛𝑑	
 𝑆𝐿𝐴abcd0ef, 𝑃𝐸, 𝑈𝑠𝑒𝑟 ;
𝑖𝑓	
 𝑆𝐿𝐴abcd0ef. 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	
 == 	
 𝑡𝑟𝑢𝑒)	
 𝑡ℎ𝑒𝑛	
 𝐹 𝑠, 𝑃𝑃1 ;
//If the SLA details (includes security services and billing) are confirmed by user, the requested policies are applied to user’s data.

Fig. 4. Protection Ontology Class Levels

Based on security levels, an example of the protection ontology
has been written as follows according to WS-Policy structure as
a standard policy structure. In this example, the cloud customer
requests a permanent role class (e.g. Manager, Employee, etc.)
and geo class (e.g. IP address from US) as access management

protocol, AES-256 [21] for encryption associated with manual
re-encryption as cryptography protocol, CBC hash function as
signature protocol, symmetric key derivation and key wrapping
as key management protocol, second-password authenticator as
authentication class, and TLS as transport class.

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:all>
 <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”>
 <security:RoleMechanism rdf:ID=”RoleClassRequirement”>
 <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”/>
 </security:RoleMechanism>
 <security:ReputationMechanism rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm rdf:resource=”GeoClass”/>
 </security:ReoutationMechanism>
 </security:AccessManagementProtocol>
 <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”>
 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:AESClass rdf:resource=”AESClass”, key:”256”/>
 </security:SymmetricMechanism>
 <security:ReEncryptionMechanism rdf:ID=REEncryptionRequirement”>
 <security:ManualReEncryption rdf:resource=”ManualReClass”/>
 </security:ReEncryptionMechanism>
 </security:CryptographyProtocol>
 <security:SignatureProtocol rdf:ID=”SignatureRequirement”>
 <security:HashMechanism rdf:ID=”HashClassRequirement”>
 <security:CBCAlgorithm rdf:resource=”CBCClass”/>
 </security: HashMechanism>
 </security: SignatureProtocol>
 <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”>
 <security:KeyWrappingMechanism rdf:ID=”KeyWrappingClassRequirement”>
 <security:SymmetricAlgorithm rdf:resource=”SymmetricWrClass”/>
 </security: KeyWrappingMechanism>
 <security:KeyDerivationMechanism rdf:ID=KeyDerivationClassRequirement”>
 <security:SymmetricAlgorithm rdf:resource=”SymmetricDerClass”/>
 </security: KeyDerivationMechanism>
 </security:KeyManagementProtocol>
 <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>
 <security:DoubleMechanism rdf:ID=”DoubleClassRequirement”>
 <security:AuthenticatorAlgorithm rdf:resource=”AuthenticatorClass”/>
 </security: DoubleMechanism>
 </security: AuthenticationProtocol>
 <security:TransportProtocol rdf:ID=”TransportRequirement”>
 <security:TLSMechanism rdf:ID=”TLSClassRequirement”/>
 </security: TransportProtocol>
 </wsp:all>
 </wsp:ExactlyOne>
</wsp:Policy>

 Regarding to the protection ontology, PMSC is capable of
directing various security algorithms and classifying them
based on the security mechanisms in the first level and security
protocols in the second level of classification. If fact, the cloud
service provider only needs to update the algorithm level based
on new or revoked features and capabilities, and to categorize
them according to the 1st and 2nd level of protection ontology.
The process of mapping policies is done based on defined
resources in each protocol, mechanism or algorithm. Hence,
PMSC is created by establishment of appropriate mapping
between security terms and semantic concepts. Table 1 shows
an example of this establishment in details. Each security term
is mapped to a semantic resource based on a protocol (row), a
mechanism (column) and an algorithm (leaf).

B. Policy Package Super Class (PPSC)
 PPSC is a super class that provides a policy object for each
stored data in cloud storage to apply set of existing policies as
standard rings or to create an individual and dedicated security
ring based on the requirements. In the first case, PPSC object is
created after checking the availability and applied updates.
However, in the second scenario, an approved PMSC object
after syntactic and semantic analysis is required for creating a
PPSC object. There are several data and security parameters
and methods that are defined in PPSC for applying security
terms to data based on the capabilities and requirements

V. SYNTACTIC ANALYSIS
 Policy Match Maker is the responsible component for
syntactic matching of requested policies based on the
capabilities and requirements. If fact, the policy matrix object
syntactically analysed in PMM to find out potential errors

regarding to the relations between protocols, mechanisms and
algorithms. There are several syntactic functions that are
possible to examine in match maker process such as the
minimum selections in each protocol, the priority sort based on
requirements in individual protocols and the established
limitation of selected algorithm based on mechanism and
protocol. Algorithm 3 shows two syntactic analysis functions
based on selected algorithms in details.

VI. SEMANTIC ANALYSIS
 RE is the responsible component for the process of semantic
analysis to check whether the selected policies are semantically
matched according to the capabilities and requirements. The
process of semantic analysis is based on n rounds.
A. 1st Priority Analysis Round (1PA)
 In the first steps all of the security algorithms with value of 1
are considered and analysed. The simplest scenario is happened
when there are one or more than one un-conflicted algorithms
with value of 1 in each security protocols. If fact, each
algorithm should not be conflicted with another one in same or
different protocol levels. Table 3, shows four examples of
conflicted algorithms in after checking syntactically in PMM.
In the first example, there are 2 encryption algorithm with value
of 1 in symmetric and asymmetric cryptography mechanisms
that are adverse but syntactically acceptable by PMM. This
confliction happens in the protocol level of encryption and key
management according to the second example and happens in
authentication protocol in the third example. The semantic
analysis confirms the first priorities in example 4 without any
contradiction but in the other cases the second round of
semantic analysis is called.

Table 1
Mapping Between Security Terms and Semantic Concepts Based on PMSC

Security Term Semantic Resource Protocol Mechanism Algorithm Row Column Leaf
Permanent Role Access Control PermanentRoleClass Access Role Permanent 1 1 1
Temporary Role Access Control TemporaryRoleClass Access Role Temporary 1 1 2
Geographical Access Control (IP-Based) GeoClass Access Repudiation Geo 1 2 1
Hardware Access Control (MAC) HardwareAccessClass Access Repudiation Hardware 1 2 2
Software Access Control (OS, Browser) SoftwareAccessClass Access Repudiation Software 1 2 3
AES Encryption AESClass Cryptography Symmetric AES 2 1 1
DES Encryption DESClass Cryptography Symmetric DES 2 1 2
RSA Encryption RSAClass Cryptography Asymmetric RSA 2 2 1
Manual Re-Encryption ManualREClass Cryptography Re-Encrypt Manual 2 3 1
Time-Based Re-Encryption TimeREClass Cryptography Re-Encrypt Periodically 2 3 2
Symmetric Key Wrapping SymmetricWrClass Key Manage Wrapping Symmetric 3 1 1
Symmetric Key Wrapping AsymmetricWrClass Key Manage Wrapping Asymmetric 3 1 2
Symmetric Key Derivation SymmetricDerClass Key Manage Derivation Symmetric 3 2 1
Asymmetric Key Derivation AsymmetricDerClass Key Manage Derivation Asymmetric 3 2 2
MD5 Signature Algorithm MD5Class Signature MAC MD5 4 1 1
SHA Signature Algorithm SHAClass Signature MAC SHA 4 1 2
CBC Signature Algorithm CBCClass Signature Hash CBC 4 2 1
H-MAC Signature Algorithm HMACClass Signature Hash H-MAC 4 2 2
Asymmetric Digital Signature Algorithm DSSClass Signature Digital DSS 4 3 1
User-Pass Authentication UserPassClass Authentication Normal User-Pass 5 1 1
User-Pass and Secure Word SecureWordClass Authentication Normal S-Word 5 1 2
Using Authenticator Component AuthenticatorClass Authentication Double Auth-App 5 2 1
Using Recovery Email/Number RecoveryClass Authentication Double Recovery 5 2 2
Online One-Time Password OnlineOneTimeClass Authentication Double Online 5 3 1
Offline One-Time Password OfflineOneTimeClass Authentication Double Offline 5 3 2
TLS Connection TLSClass Transport TLS - 6 1 -
Normal Connection NormalConClass Transport Normal - 6 2 -

Algorithm 3
Syntactic Analysis of Policy Matrix Object

Input: PM1: a policy matrix object form PMSC that has been created with desired inputs by cloud customer.
Output:

𝑆𝑒𝑛𝑑	
 (𝑃𝑀1, 𝑃𝑀𝑀, 𝑅𝐸) 𝑃𝑀1. 𝑆𝑦𝑛 == 𝑡𝑟𝑢𝑒
𝑆𝑒𝑛𝑑	
 (𝑃𝑀1, 𝑃𝑀𝑀, 𝑃𝐸) 𝑃𝑀1. 𝑆𝑦𝑛 == 𝑓𝑎𝑙𝑠𝑎

//PM1 is sent to RE for semantic analysis if the syntactic analysis is confirmed.
1 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧 	
 {𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn = 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn + 𝑃𝑀1. 𝑥. 𝑦. 𝑧; }	

 𝑖𝑓	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn == 1	
 ||	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn == 0 𝑡ℎ𝑒𝑛	
 𝑏𝑟𝑒𝑎𝑘;
	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑒𝑙𝑠𝑒	
 𝑓𝑜𝑟	
 𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 ≤ 	
 𝐾	
 ; 	
 + + 𝑧 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {𝑆𝑦𝑛𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑃𝑀1. 𝑥. 𝑦, 1,2, … , 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn ; }}}
//In the first syntactic analysis, all capable security algorithms in each security mechanism are analysed. If the user does not apply for any
of algorithms in a security mechanism, the first analysis is stopped. Also, if the user selects only one security algorithm, the selected
algorithm achieves the highest priority. However, if the user selects more than one algorithm in one security mechanism column, the
selected items should be prioritized based on the capabilities and requirements with the highest priority of 1 (perfect match), low priorities
of 2 and 3 (close and possible match) and no-match priority with value of 0.

2 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧 	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn = 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn + 𝑃𝑀1. 𝑥. 𝑦. 𝑧;
	
 	
 	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝 = 𝑠𝑦𝑛𝑡𝑒𝑚𝑝 +	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝Yn; }
 𝑖𝑓	
 𝑠𝑦𝑛𝑡𝑒𝑚𝑝 == 0 𝑡ℎ𝑒𝑛	
 {
 𝑃𝑀1. 𝑆𝑦𝑛 == 𝑓𝑎𝑙𝑠𝑒;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝐵𝑟𝑒𝑎𝑘; }	
 }
//The second process of syntactic analysis ensures about minimum selection of security policies in each security protocol.

3 𝑖𝑓	
 𝑃𝑀1. 𝑆𝑦𝑛 == 𝑡𝑢𝑟𝑒 	
 𝑡ℎ𝑒𝑛	
 𝑆𝑒𝑛𝑑 𝑃𝑀1, 𝑃𝑀𝑀, 𝑅𝐸 𝑒𝑙𝑠𝑒	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑥	
 = 	
 1	
 ; 	
 𝑥	
 <= 	
 𝑀	
 ; 	
 + + 𝑥)	
 {	

	
 	
 	
 	
 	
 	
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑦	
 = 	
 1	
 ; 	
 𝑦	
 <= 	
 𝑁	
 ; 	
 + + 𝑦)	
 {
 𝑓𝑜𝑟	
 (𝑖𝑛𝑡	
 𝑧	
 = 	
 1	
 ; 	
 𝑧	
 <= 	
 𝐾	
 ; 	
 + + 𝑧)	
 𝑢𝑝𝑑𝑎𝑡𝑒	
 𝑃𝑀1. 𝑥. 𝑦. 𝑧 ; }}}	

 𝑆𝑒𝑛𝑑(𝑃𝑀1, 𝑃𝑀𝑀, 𝑃𝐸);

B. 2nd Priority Analysis Round (2-PA)
 The second round of semantic analysis uses three main
functions to match all desired policies with un-conflicted
security terms: Elimination, Substitution and Finalization. The
first method eliminates one of the conflicted terms without any
significant effect to users’ security requirements and the second
on tries to substitute one of the conflicted terms with other
priorities. For instance, 2-PA considers two encryption
algorithms with different mechanism in example 1 (Table 3)
with same priority. In this case, one of the encryption
algorithms will be eliminated based on the requirements (i.e.
symmetric or asymmetric based on data privacy that can be
private, public or unlisted). In the second example, asymmetric
derivation conflicts with AES encryption and symmetric
wrapping. Hence, 2-PA uses substitution function to use the
second priority of key derivation mechanism and change it to

symmetric derivation. If all of conflicted terms are modified
and the current policy matrix object does not meet any
confliction in all algorithms with value of 1, the object is
finalized and other priority values (i.e. 2 and 3) are changed to
0. Else, the next semantic analysis round is called.

C. nth Priority Analysis Round (n-PA)
 The process of semantic analysis needs n rounds to check
conflicted security terms with same functions. If the confliction
is solved by each of these modification functions, the
finalization function of each round transfers the object to the
previous round. However, if all of the possibilities in the nth
round are checked without any appropriate and logical results,
the value of semantic analysis will be changed to false and will
be sent back to PE for further actions. Figure 5 shows the
semantic analysis rounds in details.

Table 3.
Example of Conflicted Algorithms in Same or Different Protocol Levels.
Protocol Example 1 Example 2 Example 3 Example 4
Access Permanent Role Permanent Role Permanent Role Permanent Role
Access Geo Geo Geo Geo
Cryptography AES ! AES ! AES AES
Cryptography RSA ! - - -
Key Manage Symmetric Wrap Symmetric Wrap ! Symmetric Wrap Symmetric Wrap
Key Manage Symmetric Derivation Asymmetric Derivation ! Symmetric Derivation Symmetric Derivation
Authentication User-Pass User-Pass User-Pass ! User-Pass
Authentication - - Authenticator ! -
Signature MD5 MD5 MD5 MD5
Transport TLS TLS TLS TLS

Fig. 5. Semantic Analysis Rounds

VII. CONCLUSION
 Regarding to security challenges in cloud-based
environments, an attributed-based policy engine management
was introduced in this paper to provide standard and dedicated
security levels based on the the capabilities of cloud provider
and requirements of cloud customers. Accordingly, the policy
engine establishes appropriate relations between policy
database and SLA engine to provide security terms as a service
in cloud computing models. Furthermore, a syntactic and
semantic analysis of security requests have been designed based
on three-levels of protection ontology to enhance the process of
policy management in clouds.

ACKNOWLEDGMENT
 This research has been supported by Clean Sky ITN project
(607584 Grant No.) funded by the Marie-Curie-Actions within
the 7th Framework Program of the European Union (EU FP7).

REFERENCES

[1]. F. Fatemi Moghaddam, M. Ahmadi, S. Sarvari, M. Eslami, and A. Golkar,
“Cloud Computing Challenges and Opportunities: A Survey,” in Proc. of
1st International Conference on Telematics and Future Generation
Networks (IEEE TAFGEN), 2015, pp. 34–38.

[2]. H. Takabi, J.B. Joshi, and G.J. Ahn, “Security and Privacy Challenges in
Cloud Computing Environments,” IEEE Security & Privacy, vol. 8, no. 6,
pp. 24–31, 2010.

[3]. S.A. de Chaves, C.B. Westphall, and F.R Lamin, “SLA Perspective in
Security Management for Cloud Computing,” in Proc. of Sixth
International Conference on Networking and Services (ICNS), 2010, pp.
212-217.

[4]. T. Phan, J. Han, J. Schneider, T. Ebringer, and T. Rogers, “A Survey of
Policy-Based Management Approaches for Service Oriented Systems,” in
Proc. of 19th Australian Conference on Software Engineering (ASWEC),
2008, pp. 392–401.

[5]. Y.Snirand, Y.Rambergand, J.Strassnerand, R.Cohenand, and B. Moore,
“Policy Quality of Service (QoS) Information Model,” Technical report,
IETF, 2003.

[6]. B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy Core
Information Model,” Version I Specification, 2001.

[7]. T. Phan, J. Han, J.G. Schneider, T. Ebringer, and T. Rogers, “A Survey of
Policy-Based Management Approaches for Service Oriented Systems,” in
Proc. 19th Australian Conference on of Software Engineering (ASWEC),
2008, pp. 392-401.

[8]. IETF. Specification for the Representation of CIM in XML, Version 2.2.
Technical Report, IETF, 2007.

[9]. J. Strassner, “Mapping the Policy Core Information Model to a
Directory,” Technical Report, OASIS, 2001.

[10]. N. Damianou, “A Policy Framework for Management of Distributed
Systems,” Imperial College, 2002.

[11]. A. Uszok, J. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S.
Aitken, “KAoS Policy Management for Semantic Web Services,” IEEE
Intelligent Systems, vol.19, no.4, pp. 32–41, 2004.

[12]. A. Uszok, J. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, and S.
Aitken, “KAoS Policies for Web Services,” Technical Report, W3C,
2003.

[13]. A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L.
Bunch, M. Johnson, S. Kulkarni, and J. Lott, “KAoS Policy and Domain
Services: Toward a Description Logic Approach to Policy Representation,
De-confliction, and Enforcement,” Policy, 2003.

[14]. L. Kagal, “Rei: A Policy Language for the Me-Centric Project,” Technical
Report, HP Labs, 2002.

[15]. Y. Zou, T. Finin, and H. Chen, “F-OWL: An Inference Engine for the
Semantic Web. In Formal Approaches to Agent-Based Systems,” Lecture
Notes in Computer Science. Springer-Verlag, vol. 3228, pp. 238-248,
2004.

[16]. C. Choi, J. Choi, and P. Kim, “Ontology-Based Access Control Model for
Security Policy Reasoning in Cloud Computing,” The Journal of
Supercomputing, vol. 67, no. 3, pp. 711-722, March 2014.

[17]. M.N. Tahir M, “C-RBAC: Contextual Role-Based Access Control
Model,” Ubiquitous Computer Communication Journal, vol. 2, no. 3, pp.
67-74, 2007.

[18]. G. Di Modica and O. Tomarchio, “Matchmaking Semantic Security
Policies in Heterogeneous Clouds,” Future Generation Computer
Systems, vol. 55, pp. 176–185, March 2015.

[19]. W3C, Web Services Policy 1.5 - Framework, W3C Recommendation,
September 2007. Available at: http://www.w3.org/TR/ws-policy/.

[20]. Icon made by Freepik from www.flaticon.com.
[21]. J. Daemen, and V. Rijmen, “AES Proposal: Rijndael”. National Institute

of Standards and Technology, pp. 1-10. April 2001.

 

