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Abstract—Middleboxes (Service Functions) have become indis-
pensable part of Enterprise, Mobile and Data Center networks.
Network operators rely on middleboxes to enforce network
policies and to provide performance optimization, security and
other value added services. With the increasing scale of network
services and use cases demanding a specific sequence of service
functions, the complexity and scale requirements of enforcing
the network policies and orchestrating the service functions
have significantly increased. Hence, elastic scaling and dynamic
service chaining of network functions is fundamental for the
performance of Data Center and Enterprise networks. To this
end, we propose Neo-NSH: an amendment to Network Service
Headers (NSH) proposal. We re-purpose the 24 bit Service
Path Identifier (SPI) to express the service-chain ID instead of
representing the service paths. Our proposal extends on the key
benefits of NSH and makes it more efficient and scalable in
facilitating the dynamic service function chaining.

I. INTRODUCTION

Middlebox functions such as firewall, intrusion detection,
cache optimization, load balancing, efc. have become an
integral part of large scale enterprise and data center networks.
Typically, flows are subject to network-resident services that
require one or more functions to be processed in sequence.
Service Function Chaining (SFC) is the construct to describe
the execution order of service functions [1].

Consider Figure 1 that illustrates two high level policies
i.e., 1) for video traffic, the service function chain demands
the traffic to traverse through Firewall and Video-optimizer
service functions and ii) for the regular web traffic, Firewall
and the value added services functions like anti-virus and
parental control services are desired. In such cases, once
the flows are classified, the flows need to be steered along
two different paths to go through the respective policy de-
sired service functions. Software Defined Networking (SDN)
provides the flexibility in setting different flow rules across
the switches and enables to steer flows accordingly. With
Network Function Virtualization (NFV), the service functions
can be provisioned to meet the traffic demands and thus many
instances of network functions can be instantiated at will to
ensure performance even at varying network loads.

SDN and NFV provide richer support for more fine grained
traffic steering and demand instantiation of network functions.
However, there are still several challenges in realizing the
dynamic SFC with traditional routing constructs. Problem
statement for SFC [2] lists out the key issues in realizing
dynamic SFC with the traditional networks and illustrates the
desired characteristics of dynamic SFC with elastic network
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Fig. 1: SFC Use case for two different traffic classes

functions. Herein, we present the key issues and characteristics
most pertinent to the scope of our work.

o Foremost is the topological independence, which aims
at defining SFC in a way that mapping of policies
to the desired service functions is independent of the
topology and underlying network routing mechanism.
This decoupling ensures the service policies to be more
generic and easily deployable across different networks.

¢ Second, the capability to re-classify and update the SFC,
which enables to change the course of traffic to traverse
through different service types. This feature is highly ben-
eficial for providing value added services like intrusion
detection, deep packet inspection, and URL filtering.

Network Service Header (NSH) [1] with a dedicated service
plane fills in these gaps and offers several other benefits like
i) the ability to exchange meta-data across service functions
in the chain through the context headers and ii) provides
end-to-end visibility of the service path However, the cost
and complexity in managing the path identifiers and updating
the path information to the Classifiers and Service Function
Forwarders (SFFs) that forward the traffic towards the service
function instances also needs to be accounted. In order to
scale and adapt at fine time scales, it is necessary to address
and manage service paths more efficiently. We account for
the control plane aspects pertaining to how the policies are
mapped on to the network topology and service function
instance specific Service Path Identifier (SPI) management
and the role of control plane in managing and updating the
SFFs whenever a new service function instance is added or an
existing instance is taken down.

The key contributions of our work include:

o Illustration of the control plane functionality needed to

support NSH. We argue that the NSH construct of SPI
results in significant cost and complexity in control plane,



and we seek to simplify it.

o Our proposal Neo-NSH, that provides flexibility, ease of
configuration and adaptability to instantiate/relocate the
service functions with minimal control plane overhead.

o Preliminary evaluation that justifies the benefit of our
proposal in terms of achieving significant reduction in
the number of SPIs.

II. RELATED WORK

Over the past few years, several works [3]-[7] have pro-
posed solutions for SFC. We briefly discuss a few that employ
network overlay (MPLS, VLAN, VxLAN), underlay (over-
loading the existing L2/L.3/L4 header fields), and alternate
header based approaches.

A. SFC with Network Overlay and Underlay

Shadow-MACs [6] and OpenSCaaS [7] emphasize on uti-
lizing the L2 address fields —media access control (MAC)
address to represent the path identifiers. [6] utilizes the desti-
nation MAC addresses as opaque forwarding labels while [7]
employs the source MAC addresses as a forwarding label to
setup the service chain ID (SC-ID). In both cases, the SDN
controller has the responsibility of managing (defining and
mapping) the SC-ID and setting up the appropriate L2 address
to steer traffic to the desired service instance. StEERING [3]
also overloads the L2 address fields, to steer packets to inline
service functions. It relies on multiple forwarding tables that
require additional extension to the Openflow API. In addition,
it requires all the service function instances in the network to
be aware of the Ethernet address of all the service functions in
the network topology, which limit the flexibility and scalability
of elastic network functions.

These approaches provide efficient mechanism to steer the
packets through the service function chain by re-purposing the
existing packet headers fields, however they cannot support the
exchange of meta-data and lack the ability to re-classify or
alter the course of service functions after initial classification
and assignment of the service function chain, thus inhibit the
support for elastic network functions.

B. SFC with explicit tag and other alternatives

FlowTags [8] enable SFC by defining tag enhanced net-
work functions, where the network functions generate and
consume the service tags, while switches forward the packets
based on the tags. SIMPLE [5] addresses efficient routing by
constraining the number of switch forwarding rules and load
balancing the traffic across middle-box instances and relies
on the tag-based approach to tunnel packets across service
functions. The computation and optimization of service paths
is done through the mix of offline and online mixed integer
linear programming, which results in considerable amount of
computation time complexity. These approaches can facilitate
re-classification and enable to alter the route through every
service function, but as with earlier approaches, information
exchange and sharing of meta-data is not possible. In addition
these approaches need to account for additional complexity in
tag management and distribution.

[9] and [10] propose Information Centric Networking (ICN)
based approach of named services and named service instances
for service chaining i.e., the routing based on service function
names and service instance names respectively. The network
elements (routers and switches) take the responsibility of
steering traffic to the desired service function instance. Both
rely on network overlay/underlay mechanisms to tunnel flows
to service instances. Though, the approach in [9] results in
enormous reduction of switch rules, due to lack of fine grained
control, it fails to provide visibility and control over appropri-
ate service instance selection for a class of traffic, which is
generally required for multi-tenancy, multi-subscriber policy
matching and cannot cater to optimal instance utilization.
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Fig. 2: Packet Structure of Network Service Header
III. NSH - DEDICATED SERVICE PLANE FOR SFC

Network Service Header (NSH) [1] is an IETF draft pro-
posed to address the Service Function Chaining (SFC) based
on the SFC encapsulation to support the SFC architecture as
outlined in the RFC7665 [11]. NSH defines the data plane
header format that is used to create a dedicated service plane
for realizing SFC. The NSH as shown in Figure 2 consists of
the following fields:

e A 4-byte Base header consisting of Version, Flags, MD
Type and Next Protocol fields. The next protocol field
indicates the protocol type of the encapsulated data.

e A 4-byte Service Path Header consisting of a 24 bit
Service Path ID (SPI) and 8 bit Service Index (SI), is
used to define the service path that interconnects needed
service functions.

o Meta-data context headers. The value of MD Type deter-
mines the context headers. If the value is 0x1, it consists
of four mandatory 32-bit context headers as shown in
Figure 2 or if the value is 0x2, this field is optional,
consisting of variable length context headers.

SPI defines one of the possible instantiations —a logical path
to sequence of specific service function instances of a SFC,
while the SI indicates the location within the service path. In
addition, NSH defines optional header fields that can carry
meta-data information. The format of meta data is determined
by the MD type field in the base header. However, it must be
noted that NSH needs to be inserted onto encapsulated packets,
i.e., the actual transport/steering of packets in the network is
based on the outer encapsulation.

A. Why NSH?

The NSH approach of specifying a dedicated service plane
for service function chaining offers several benefits:



SFC Approach
Service ID

Service Instance ID
Service Chain ID
Service Path ID

Number of Unique Identifiers

a Num. of Function Types (SFT)

a Num. of Function Instances (SFT)
a Factorial(Chain Length)

a Factorial(Chain Length)>TT

TABLE I: Identifier requirements for different SFC approaches

o« NSH provides a transport and topology independent
service forwarding framework. This decoupling enables
the service plane to be realized as overlay service over
the existing data plane without requiring any additional
complexity and protocols at the data plane.

o NSH enables the ability to classify and re-classify the
flows at each service functions. This enables to dynami-
cally steer same flows across different service paths and
enables to have more richer and finer policy control.

« NSH enables to exchange meta-data across service func-
tions in chain through the context header fields. This
aspect is beneficial for Gi-Lan/mobile use cases that can
carry the subscriber ID and Tenant IDs across the chain
to realize per-user/per-subscriber based policies.

« NSH also provides end-to-end service path visibility. This
enables to monitor and troubleshoot service functions,
which is critical for Operations and Management (OAMs)
to support high availability and resiliency.

B. Where NSH falls short?

Despite the key benefits of NSH, it doesn’t account for
control plane overheads in terms of required orchestration and
overlay management i.e., label distribution as in Multiprotocol
Label Switching (MPLS) and Label Distribution Protocol
(LDP). We show that the SPI management with NSH is com-
plex and the burden on the control plane affects the efficiency
and scalability. Foremost, NSH is a SFC encapsulation, that
is transport agnostic and requires an outer transport specific
encapsulation to forward the NSH packet across the network.
Control plane is responsible to manage this encapsulation. This
however is customary function of a control plane even in the
absence of NSH.

SFC control plane is responsible for constructing Service
Function Paths (SFPs), translating SFCs to forwarding paths,
and propagating path information to participating nodes to
achieve requisite forwarding behavior to construct the service
overlay. i.e., It is up to the control plane to map the high level
policies based on the network topology and service function
instances in the network to specific Service Path Identifiers
(management of SFPs) and in updating the SFFs about the
SFP mapping, that can change over time with addition of new
service function or deletion of existing services and instances.

In Section IV, we highlight the key challenges with NSH in
terms of control plane responsibilities to manage and update
the Service Path Identifiers and pitch towards an approach to
mitigate the challenges in handling the SPIs.

I'V. PROBLEM DESCRIPTION

The key to realizing agile and elastic network functions is
the ability to dynamically instantiate, remove and relocate the

network functions. Any such activity would result in having
either a new set of service paths or the invalidation of existing
service paths. The current NSH draft defines a 24-bit Service
Path Identifier (SPI) and 8-bit Service Index (SI). SPI defines
one of the possible instantiations (a logical path to sequence of
service functions that includes one of the several instances of
each service function) for a given SFC, while the SI indicates
the location within the service path. Typically the order of
relation between service chains and service paths is 1 : n
and it grows exponentially [12]. Although 24 bits is large
enough to accommodate any sets of possible service paths the
complexity is in managing the SPI labels and updating labels
to the Classifiers and different SFFs.

A. Control plane Functionality

In conjunction to the role of control plane listed in the SFC
architecture [11], in order for NSH to realize a service plane,
the control plane needs to perform at least the following tasks:

« For all the SFCs, construct the map of SPI (labels) needed
for each valid logical path to the SF instance in the chain.

o Disseminate (communicate and update) the SPI infor-
mation to the Service Function Forwarders (SFFs) and
Service Functions (SFs).

Note that the SPI labels would change every time there is
either an addition or deletion of as service function instance
or changes to the physical topology.

Though, it can be argued that topological changes are rather
rare, and addition or removal of service functions too are
rather infrequent, it must be noted that key benefit of NFV is
in that it enables to realize elastic service function instances
that can be dynamically instantiated or de-commissioned to
better adapt to the traffic requirements and meet the SLA
requirements from customer perspective and also improve on
the overall network utilization. Hence the second aspect cannot
be ignored for providing a truly elastic and dynamic service
function chaining.

B. Control plane Overhead Analysis

From section II, we observe that the identification of service
paths and the classification of different service paths and
service chains can be broadly categorized into four different
categories. i) that assign label for each service type and let
the SDN controller to steer traffic in a service by service
fashion to different service function instances in the network
[9]. ii) that assign label for each service instance and let the
SDN controller and SFFs to determine and steer traffic to
different service function instances in the network [10]. iii) that
assign the label for each service chain - a high level policy of
desired service functions and let the network to employ some
overlay/underlay to steer traffic across service functions [8].
iv) that assign the identifier to each of the logical service paths
to the service function instances in the network [1]. The scale
of required identifiers to define an end-to-end service function
chain and the involvement of SDN controller vary for each of
the approaches.
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We first present the scale of the number of unique identifiers
(labels) required for the different approaches discussed earlier.
From Figure 3a, we see that approaches that utilize the service
or service-instance! based labels like FCSC [9], NSN [10], and
source-routing [12] require a minimum number of labels, while
the service-chain ID? and service path ID based approaches
require a far larger number of labels. Table I shows the way
in which the number of unique labels for each of the different
approaches are determined.

We observe that the number of active service function
instances (SFIs) affect on the number of identifiers required for
the approaches relying on the service instance id and service
path ids. In the latter case, we can see that number of identifiers
scale almost exponentially, as each instance addition results in
multiplier of factorial of new possible paths. Analytically, we
can show that for addition of every service function instance
to each of the service functions types the label requirements
for a given chain length grows as shown in Table 1. Also,
note that from Figure 3b, with the increasing length of service
chains and scale of service instances, the number of SPIs
scales exponentially. This implies that burden on the control
plane for performing the aforementioned tasks for any addition
or deletion of service instances is significant. i.e., with the
increase in number of services in a chain and number of in-
stances, the control plane overheads in managing and adapting
to the increased number of paths, and dissemination of path
information to each of the instances grows exponentially.
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V. NEO-NSH PROPOSAL
We make the following fundamental observations:

IService IDs correspond to number of unique services in the network,
and service instance IDs to the number of instances for each service type.
Figure 3a considers two instances per service function type.

2We acknowledge that SFC-IDs are mapped based on the required policy
intents and are often much limited than actual possible combinations of service
chains.

o The service-chain IDs directly reflect the high-level spec-
ification of the policy intent.

o The number of labels required to support service IDs, and
service-chain IDs is minimal compared to path identifiers.

« service ID base approaches are not affected by the service
instance dynamics (i.e., addition, deletion and relocation).

Therefore, augmenting such a feature in NSH, naturally makes
it a more robust candidate for implementing a dynamically
scalable SFC. Also, we note that the real benefit of SPI (as
purposed in NSH) is in providing the traceability and end-to-
end visibility of the service function chains logical path.

We propose to relax the usage of SPI in its true sense, i.e., to
refer to the service paths and instead we propose to re-purpose
the usage of 24-bit SPI field to denote the service-chain ID.
This way SPI more closely reflects the intent of the service
chain policy and represents the list of service functions and
not the logical path to the service instances in SFC.

In Neo-NSH approach, the Service Forwarders (SFs) use
the SPI and SI fields to represent the service function type
rather than the service function instance, and let the network
to dynamically choose the best instance based on the ser-
vice function type( or service name) and the context data
information. Service Function Forwarders (SFFs) that select
the service path have to rely on either the control plane or
the intelligent data-plane to choose the appropriate service
instance. And, the role of service classification functions that
update the service header is changed to inserting the service-
chain ID, while the role of service functions and SFF is
unchanged compared to the NSH.

The only down-side of our proposal Neo-NSH is the loss
of end-to-end path visibility. The actual path ie., the list
of physical SFs chosen for given SPI cannot be determined
statically, as the same SPI could map to different logical
paths (path to different service function instance) and physical
paths. As the SPI is not static but determined at the run-
time (meaning it can change dynamically), it provides an
additional benefit of providing the ability to adapt to the
network requirements dynamically.

Table II shows the feature comparison between NSH and
Neo-NSH. We can observe that Neo-NSH retains all the key
features of NSH.

A. Dynamic Service Function Instance selection

Typical to the SDN, whenever the flows are classified and
service chain ID that determines the policy intent is derived,



the controller must determine the appropriate service function
instances and then ensure to set the forwarding rules at each
of the forwarding elements so that the flow or class of flows
traverse through the identified set of service instances. In-
order to avoid the path setup latency, forwarding rules can be
proactively setup at the forwarders and controller can modify
the rules based on the network load in order to re-route and
distribute the flows evenly across different service function
instances. The key benefits of this approach over static path
identification are: i) capability to load-balance the traffic across
service function instances. ii) the addition/removal of service
function instances does not affect the SPI. Hence the network
becomes more agile and as well there is no need to compute
and communicate the SPI labels to the SFFs.

TABLE II: Salient features of NSH and Neo-NSH

Features NSH | Neo-NSH
v
Topological independence
) v v
Transport agnostic
] ] v v
Meta-data sharing and re-classification
v X
End-to-End path visibility
X v
Flexible service instance selection
High Low
SPI management overhead
High Low
Communication overhead

In Neo-NSH, by separating the logical service chain from
actual service path, we can achieve significant improvements
to NSH in terms of:

o Adaptability and efficiency: by reducing the control over-
heads in managing the path IDs and disseminating them
to all the service instances.

« Flexibility: classifiers, service functions and proxies only
need to care about logical service chain and not the
service paths.

o Scalability: can easily accommodate more instances of
service functions without impacting the SFFs.

VI. EVALUATION

We performed preliminary evaluation of the proposal using
the mathematical model to demonstrate the benefits of Neo-
NSH. We compare Neo-NSH with base NSH approach. In
this evaluation, we primarily focus on the demonstrating the
benefit achievable in terms of the reduction in the number of
service path identifiers in the case of increasing service chain
length and increasing number of instances.

From Figure 4, we can see that in case of base NSH, the
number of Service Path Identifiers scale exponentially with
the increasing service chain lengths and also for a given
service chain length NSH exhibits exponential growth with the
increasing number of service function instances of the chain.
With our proposal Neo-NSH, the number of SPIs increase only
with the increasing service chain lengths Thus Neo-NSH in-
comparison to NSH, not only results in significantly lowering
the number of path identifier labels, but can support the
elastic network functions wherein the network functions can

be dynamically instantiated without any additional overhead
of updating the SPIs to all the participating NSH aware
components of the network.

VII. CONCLUSION

We have characterized and analyzed the benefits and chal-
lenges with the current NSH. We have proposed Neo-NSH,
an enhancement to NSH and demonstrated the benefits of our
proposal which enables for a more agile and flexible network
for service function chaining with elastic network functions.
We seek to discuss and incorporate improvements on our
proposal from the community. Next, we plan to prototype our
solution using ONOS controller to evaluate and quantify the
benefits of our proposal.
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