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Abstract—In nowadays cloud computing systems, leveraging
the virtualization technology, the customer’s requested data
computing or storing service is accommodated by a set of mutual-
communicated Virtual Machines (VM) in a scalable and elastic
manner. These VMs are placed in one or more datacenter nodes
according to nodes’ capacities, failure probabilities, etc. The
VM placement availability refers to the probability that at least
one set of the whole customer’s requested VMs operates during
the entire requested lifetime. The placed VMs should obey the
agreed-upon availability, otherwise the cloud provider may face
revenue loss.

In this paper, we study the problem of placing at most H
sets of k requested VMs on minimum number of datacenter
nodes, such that the VM placement availability requirement
is satisfied and each VM pair has a communication delay no
greater than the specified. We prove that this problem is NP-hard.
We subsequently propose an exact Integer Nonlinear Program
(INLP) and an efficient heuristic to solve this problem. Finally, we
conduct simulations to compare the proposed algorithms with two
existing heuristics in terms of acceptance ratio, average number
of used nodes and running time.

Index Terms—Virtual Machine Placement; Availability; Cloud
Computing

I. INTRODUCTION

Cloud computing [1] is a distributed computing and storing

paradigm, which can provide scalable and reliable service

over the Internet for on-demanding data-intensive application

(e.g., on-line search or video streaming) and data-intensive

computing (e.g., analyzing and processing large volume of

scientific data). The key features of cloud computing including

“pay-as-you-go” and “elastic service” attract more and more

service providers and customers to deploy their workload from

their own infrastructures or platforms to public or private

clouds.

Distributed cloud systems are usually composed of dis-

tributed inter-connected datacenters, which leverage virtualiza-

tion technology to provide computing and storage service for

each on-demanding requests. Once a request arrives, several

Virtual Machines (VM) are created in one or more datacenter

nodes in order to accommodate it. However, the datacenter

node failures [2] caused by hardware (e.g., hard disk, memory

module) failures and software problems (e.g., software bugs,

configuration errors) may result in the loss of the VMs hosted

on it and hence the whole service cannot be guaranteed. An

efficient way to overcome it is to create and place more

VM replicas, but this approach should also take the nodes’

availabilities into account. For instance, if all the VMs together

with their replicas are placed at nodes with high failure

probability, then the proper service cannot be guaranteed.

The VM placement availability, a value between 0 and 1, is

therefore important and refers to the probability that at least

one set of the whole customer’s requested VMs are in their

operating state during the entire requested lifetime.

In this paper, we study the Reliable VM Placement (RVMP)

problem, which is to place at most H sets of k requested

VMs on minimum number of network nodes, such that the

VM placement availability is no less than δ and each VM pair

has a communication delay no greater than the specified. Our

key contributions are as follows:

• We propose a mathematical model to formulate VM

placement availability, and prove that the Reliable VM

Placement (RVMP) problem is NP-hard.

• We propose an Integer Nonlinear Program (INLP) and a

heuristic to solve the RVMP problem.

• We compare the proposed algorithms with two existing

heuristics in terms of performance via simulations.

The remainder of this paper is organized as follows: Sec-

tion II presents the related work and Section III formulates

the VM placement availability calculation. In Section IV,

we define the Reliable VM Placement (RVMP) problem and

prove it is NP-hard. We propose an exact Integer Nonlinear

Program (INLP) and a heuristic to solve the RVMP problem

in Section V. Section VI provides our simulation results, and

we conclude in Section VII.

II. RELATED WORK

A high-level comprehensive survey about resource manage-

ment in clouds including VM placement is shown in [3].

A. Network-Aware VM Placement

Alicherry and Lakshman [4] deal with 3 problems of placing

VMs in geo-distributed clouds. They first study how to place

requested VMs on distributed datacenter nodes such that

the maximized length (e.g., delay) of placed VM pairs is

minimized. A 2-approximation algorithm is proposed to solve

this problem when a triangle link length is assumed. They

subsequently study how to place VMs on physical machines

(racks and servers) within a datacenter in order to minimize

inter-rack communication. Assuming the topology of the data

center is a tree, they devise an exact algorithm to solve this



problem. Finally, they propose a heuristic for partitioning VMs

into disjoint sets (e.g., rack) such that communication between

VMs belonging to different partition is minimized.

Biran et al. [5] address the VM placement problem by

minimizing the min-cut ratio in the network, which is defined

as the used capacity of the cut links consumed by the commu-

nication of VMs divided by the total capacity of the cut links.

They prove this problem is NP-hard and propose two efficient

heuristics to solve it.

Meng et al. [6] address the problem of assigning VMs to

slots (CPU/memory on a host) within a datacenter network in

order to minimize total network costs. A one to one mapping

function is defined as π(x) → y, indicating whether VM x
is placed at slot y, where x, y ∈ [1, . . . , k] and k denotes

the total number of requested VMs and slots. In this context,

the network cost is calculated as
∑

DijCπ(i)π(j), where Dij

denotes the traffic rate between VMs i and j, and Cπ(i)π(j)

refers to the communication cost between slot π(i) and π(j).
They prove this problem is NP-hard and propose a heuristic

trying to assign VMs with large mutual rate requirement close

to each other.

B. Reliable VM Placement

Israel and Raz [7] study the Virtual Machine (VM) Recovery

Problem (VMRP). The VMRP is to place the backup VMs

for their corresponding servicing VMs on either active or

inactive host, which needs to strike a balance between the

(active) machine maintenance cost and VM recovery Service

Level Agreement (e.g., recovery time). They show that the

VMRP is NP-hard, and they propose a bicriteria approximation

algorithm and an efficient heuristic to solve it.

Bin et al. [8] tackle the VM placement problem by con-

sidering k-resiliency constraint to guarantee high availability

goals. A VM is marked as k-resilient, if its current host fails

and there are up to k − 1 additional host failures, then it can

be guaranteed to relocate to a non-failed host. In this sense, a

placement is said to be k-resilient if it satisfies the k-resiliency

requirements of all its VMs. They first formulate this problem

as a second order optimization statement and then transform

it to a generic constraint program in polynomial time.

Zhu et al. [9] address the Reliable Resource Allocation

(RRA) problem. In this problem, each node has a capacity

limit of storing VMs and each link is associated a failure

probability value (=1−availability). The request is arriving in

an on-line fashion, which specifies the requested number of

VMs and availability value. The problem is to find a star of

a given network, such that the node capacity limit is obeyed

and the availability of the star is at least δ. They prove that the

RRA problem is NP-hard and propose an exact algorithm as

well as a heuristic to solve it. However, the defined problem in

[9] does not consider the node’s availability and also it restricts

to find a star instead of arbitrary subgraph.

Nevertheless, none of above papers quantitatively model the

availability of VM placement (and solve the respective reliable

VM placement problem), as we do in this paper.

III. VM PLACEMENT AVAILABILITY

The availability of a system is the fraction of time the

system is operational during the entire service time. The

availability Aj of a network component j (e.g., rack, switch)

can be calculated as [10]:

Aj =
MTTF

MTTF +MTTR
(1)

where MTTF represents Mean Time To Failure and MTTR
denotes Mean Time To Repair. In this paper, we regard the

node in the network as a datacenter (similar to [4], [11]).

We assume that the datacenter’ availability is an overall

metric to measure and reflect its availability level, and this

fractional value can be calculated based on its physical hard-

wares’ failures1, typology [13], geographical location, etc.

Since calculating the datacenter’s availability is out of the

scope of this paper, we assume that the datacenter node’s

availability value is known. It is worthy to mention that the

VM placement availability formulation model (together with

the later discussed Reliable VM Placement (RVMP) problem)

is general and it does not only confine to the scenario discussed

in this paper. For instance, it can also be applied to the scenario

where we place VMs on a cluster of servers, and each server

can be regarded as a node. In this paper, we assume that

the node availabilities are uncorrelated/independent. We also

assume a more general multiple nodes failure model, which

means that at one certain time point, multiple nodes may fail.

Suppose there is a set of k requested VMs V , which are

represented by v1, v2,. . . , vk. Let us use Hi to represent

the maximum number of nodes to host VM vi and denote

H = maxki=1(Hi). Or equivalently, Hi indicates the maximum

number of nodes that vi can be placed on. In the following,

we analyze the VM placement availability under two different

cases, namely (1) Single Placement: each VM is exactly placed

on H = 1 node in the network (2) Protected Placement:

∃vj ∈ V , it can be placed on Hj > 1 nodes in the network,

so H > 1.

In the single placement case, if m nodes with availability

A1, A2,. . . , Am are used for hosting k VMs (m ≤ k), then

the availability (denoted by Ap) of this VM placement is:

Ap = A1 ·A2 · · ·Am (2)

Eq. (2) indicates that since in total k VMs are requested, the

availability should take into account the probability that all

these k VMs are operational.

In the protected placement case, there exist one or more

VMs that can be placed on at most H nodes. Therefore, we

regard that a protected placement P is composed of (at most)

H single placements. For the ease of clarification, we further

define each of H single placements in the protected placement

as placement plan pi, which means the “i−th” placing k VMs

on mi nodes, where 1 ≤ i ≤ H and 1 ≤ mi ≤ k. We regard

that p1 as the primary placement plan. We make no difference

1Please refer to [2], [12] and the papers therein for more details about
physical hardwares’ failures characteristics in datacenter networks.



between single placement and placement plan. Since different

placement plans may place one or more VMs on the same

node, we distinguish the protected placement into two cases,

namely (1) fully protected placement, for each VM v ∈ V , it

is placed by each plan pi (1 ≤ i ≤ H) at H different nodes,

and (2) partially protected placement, ∃v ∈ V , it is placed on

less than H nodes, i.e., two or more placement plans place v
on the same node.

In the fully protected placement case, the availability can

be calculated as:

AF
PD = 1−

H∏
i=1

(1−Api) =

H∑
i=1

Api −
∑

0<i<j≤H

Api ·Apj

+
∑

0<i<j<u≤H

Api
·Apj

·Apu
+ · · ·+ (−1)H−1

H∏
i=1

Api

(3)

where Api =
∏

n∈mi
An denotes the availability of single

VM placement according to Eq. (2). Eq. (3) implies that

the availability of H placement plans is equivalent to the

probability that at least one single placement (a set of k VMs)

is operational in the service-life time.

In the partially protected placement case, if there exists one

VM which is placed on less than H nodes, we could regard

that it is “sharely” placed by more than one placement plan.

For example in Fig. 1, each node is associated with its own

availability value and we need to place three VMs (v1, v2 and

v3) on it. We set H1 = H2 = 2 and H3 = 1 for simplicity.

We assume that placement plan p1 to place v1 and v2 on node

A, and placement plan p2 to place replica v′1 and replica v′2
on node B, where v′1 = v1, v

′
2 = v2. On the other hand, v3

is only placed on one node. Therefore, we can regard that p1
and p2 “sharely” place v3 on node C.

A

B
0.9

0.9

0.8

v’1,v’2 C

v1,v2

v3

 Placement plan p1: v1, v2, v3
   Placement plan p2: v’1, v’2, v3

Fig. 1: An example of partially VM placement.

However, we cannot directly apply Eq. (3) to calculate

its availability, since the availabilities of nodes which hold

“shared” VMs will be counted more than once. To amend

this, we use a new operator ◦2. Suppose m different nodes

n1, n2, . . . , nm with availabilities A1, A2, . . . , Am. For a node

nx with availability Ax, ◦ can be defined as follows:

A1 ·A2 · · ·Am ◦Ax =

{ ∏m
i=1 Ai if ∃ni = nx∏m
i=1 Ai ·Ax otherwise

(4)

2Similarly as we did in [14] to calculate the connection availability of
partially link-disjoint paths.

Let
∐

denote the ◦ operations of different sets, then the

availability (represented by AH
PD) of H partially placement

plans can now be represented as:

AH
PD = 1−

H∐
i=1

(1−Api
)

= 1− (1−Ap1
) ◦ (1−Ap2

) ◦ ◦ ◦ (1−ApH
) (5)

=

H∑
i=1

Api −
∑

0<i<j≤H

Api ◦Apj+

∑
0<i<j<u≤H

Api
◦Apj

◦Apu
+ · · ·+ (−1)H−1

H∐
i=1

Api

where Api
denotes the availability of placement plan pi and

can be calculated from Eq. (2).

To better illustrate it, we take Fig. 2 for example. In Fig. 2,

it is assumed that each node can host at most one VM

for simplicity and its availability value is labeled on itself.

Suppose three VMs v1, v2, and v3 are placed on node s, a and

b, respectively, then according to Eq. (2), the availability of this

VM placement is 0.95 · 0.9 · 0.9 = 0.7695. If we set δ = 0.85,

this VM placement cannot satisfy customer’s requirement. We

regard the above VM placement plan as p1. And we add one

more plan p2, where we place one more replica of v2 (repre-

sented by v′2) on node c, one more replica of v3 (represented

by v′3) on d, and regard p2 and p1 together sharely place v1 on

node s. Hence, according to Eq. (5), the overall availability of

p1 and p2 is 1−(1−0.95·0.9·0.9)◦(1−0.95·0.8·0.6) = 0.95·
0.9·0.9+0.95·0.8·0.6−0.95·0.9·0.9·0.8·0.6 = 0.85614 > δ.

ba

c d

0.9

s t

0.9

0.95

0.8 0.6

0.2v1

v2 v3

v’2 v’3

Placement plan p1: v1, v2, v3
   Placement plan p2: v1, v’2, v’3

Fig. 2: An example of partially VM placement availability

calculation.

IV. PROBLEM DEFINITION AND COMPLEXITY ANALYSIS

A. Problem Definition

Formally, the Reliable VM Placement (RVMP) problem is

defined as follows:

Definition 1: Given a complete graph G(N ,L), where N
denotes a set of N nodes and L represents a set of L =
N(N−1)

2 links. Each node Ni ∈ N has storage upper bound

of si, and each link l ∈ L is associated a delay value dl.
A request is represented by r(k, c, V, T, δ), where k indicates

the number of requested VMs V with demanding capacity



cv (v ∈ V ), T is a k × k matrix, which specifies the delay

constraint between any two VMs, and δ denotes requested

availability. The Reliable VM Placement (RVMP) problem is

to place at most H sets of k VMs by using minimum number

of nodes such that:

1) Each node does not exceed its storage limit.

2) Any two VMs i1 and i2 under the same placement plan

have a communication delay no greater than T (i1, i2).
3) Its VM placement availability is no less than δ.

In the RVMP problem, we assume each VM can be placed at

up to H different nodes. Moreover, we only consider the nodes

that have the storage capabilities (e.g., datacenter nodes) and

ignore some other nodes in the network (e.g., router nodes).

In fact, the link between each node pair in the RVMP problem

actually may imply a (set of) path(s) which may traverse some

other intermediate nodes. Finding reliable and delay-sensitive

paths is out of scope of this paper, we therefore assume that the

path(s) (represented by link in the RVMP problem) between

each node pair is precalculated and highly reliable.

B. Complexity Analysis

Theorem 1: The RVMP problem is NP-hard.

Proof: Let’s first introduce the Bin-Packing problem:

Given n items with sizes e1, e2, . . . , en, and a set of m bins

with capacity c1, c2, . . . ,cm, the Bin-Packing problem is to

pack all the items into minimized number of bins without

violating the bin capacity size. If we assume that the delay of

links in the network is 0 and all the nodes have availability 1,

then the RVMP problem for H = 1 turns into the bin-packing

problem, which is NP-hard [15].

Next, we further analyze the complexity of the RVMP

problem when the objective and link delay constraint are not

taken into account. We consider this problem with and without

node storage limits.

• Each node has unlimited storage: In this case, each set of

k VMs can be placed on one node and we need to find

H nodes in the network to store each set of k VMs. This

can be solved in
(
N
H

)
searching when N > H or using

N nodes to host N sets of k VMs when N ≤ H , which

is polynomial time solvable.

• Each node has limited storage: In this case, we assume∏
n∈N An ≥ δ and H = 1 for simplicity. Therefore,

the problem is equivalent to placing k VMs on N nodes

in the network such that the node storage constraint

is obeyed. This problem is therefore equivalent to the

decision version of the Bin-Packing problem, which is

NP-hard.

V. EXACT SOLUTION AND HEURISTIC

A. Exact Solution

In this subsection, we propose an exact Integer Nonlinear

Program (INLP) to solve the RVMP problem. We start by

explaining the necessary notations and variables:

INLP notations:
r(k, c, V, T, δ): a request r which specifies a set of k VMs

V . For each v ∈ V , its demanding capacity cv . T indicates

the delay constraint among different VMs, and δ implies the

requested VM placement availability.

N ,L: set of N nodes and set of L links, respectively.

H: The maximum number of times for each VM to be

placed in the network.

INLP variable:
Ph
vn: whether VM v is placed on node n by placement plan

h, where v ∈ V , n ∈ N and 1 ≤ h ≤ H .

Objective:

min
∑
n∈N

(
max

1≤h≤H,v∈V
Ph
vn

)
(6)

Placement constraint:

∑
n∈N ,1≤h≤H

Ph
vn ≥ 1 ∀v ∈ V (7)

Storage constraint:

∑
v∈V

(
H

max
h=1

Ph
vn

)
· cv ≤ sn ∀n ∈ N (8)

Delay constraint:

d(x,y) · Ph
ax · Ph

by ≤ T (a, b) ∀1 ≤ h ≤ H, (x, y) ∈ L,
a, b ∈ V : a 	= b (9)

VM placement availability constraint:

H∑
h=1

∏
n∈N

min
v∈V

(
1− Ph

vn + Ph
vnAn

)
−

∑
1≤h<u≤H

∏
n∈N

min

(
min
v∈V

(1− Ph
vn + Ph

vnAn),min
v∈V

(1− Ph
vn + Ph

vnAn)

)

+ · · ·+ (−1)H−1

⎛
⎝ ∏

n∈N
min

1≤h≤H
(min
v∈V

(1− Ph
vn + Ph

vnAn))

⎞
⎠ ≥ δ

(10)

Eq. (6) minimizes the number of total used nodes. For

instance, we first calculate the maximum value of Ph
vn for

node n ∈ N , and as long as Ph
vn = 1 for some 1 ≤ h ≤ H

and v ∈ V , it means that node n in use to host VM. After that,

we take the sum of
(
max1≤h≤H,v∈V Ph

vn

)
for all the nodes

in N and try to minimize this value. Eq. (7) ensures that

each one of k requested VMs must be placed in the network.

Eq. (8) ensures that each node does not exceed its storage

limit when VMs are place on it. Eq. (9) makes sure that any

two VMs under the same placement plan should have a delay

less than the specified time constraint. Eq. (10) ensures that

the availability constraint is obeyed. We also note that Eq.

(10) can simultaneously calculate the availability of the fully

protected placement, partially protected placement, and single

placement. For instance when H = 2, Eq. (10) becomes:



∏
n∈N

min
v∈V

(1− P 1
vn + P 1

vnAn) +
∏
n∈N

min
v∈V

(1− P 2
vn + P 2

vnAn)

−
∏
n∈N

min(min
v∈V

(1− P 1
vn + P 1

vnAn),min
v∈V

(1− P 2
vn + P 2

vnAn))

≥ δ (11)

When P 1
vn = P 2

vn for all n ∈ N , Eq. (11) becomes∏
n∈N

min
v∈V

(1− P 1
vn + P 1

vnAn) ≥ δ

which is the VM placement availability constraint for the

single placement.

B. Heuristic Algorithm

Algorithm 1: DSG(G(N ,L), r(k, c, V, T, δ), H)

1 V P [h][v][n] ← 0 ∀1 ≤ h ≤ H, |v| = k, |n| = N
2 for h ← 1 to H do
3 V P [h] ← DSGPlace(G(N ,L), r(k, c, V, T, δ), H)
4 N ← N\Nx, where Nx denotes a subset of the used

nodes for already found placement plans.

5 if 1 − (1 − AV P [1]) · (1 − AV P [2]) . . . (1 − AV P [H]) ≥ δ then
6 Call PartiallyDSGPlace(G, V P [h][k][N ], r,H)

7 Return null

Algorithm 2: DSGPlace(G(N ,L), r(k, c, V, T, δ), H, )

1 foreach vm in V (1 ≤ m ≤ k) do
2 vx ← vm, Q ← ∅, Gm ← G, Pm[V ][N ] ← 0
3 while Q.Count < k do
4 Sort the nodes in Gm by their availabilities in the

decreasing order n1, n2,. . . ,nN

5 Find one node na with maximum availability to

host vx without violating the delay constraint

with already placed VMs, such that sna
≥ cvx

6 if Step 5 succeeds then
7 Pm[vx][na] ← 1, sna

← sna
− cvx

, Ana
← 1,

Q.Add(vx)
8 else
9 Break;

10 D ← +∞;

11 foreach vi in V \Q do
12 foreach vj in Q do
13 if D > T (vi, vj) then
14 D ← T (vi, vj), vx ← vi

15 Return Pm with the maximum availability.

Our proposed heuristic, called the Delay-Sensitive Greedy

(DSG) placement algorithm, is shown in Algorithm 1. Instead

of placing VMs on nodes in a conventional way, the logic

Algorithm 3: PartiallyDSGPlace(G, V P [H][k][N ], r,H)

1 Sort the nodes that host VMs in increasing order by

nodes’ availabilities. Denote this set as Ny .

2 foreach n ∈ Ny do
3 V B ← V P
4 V B[h][v][n] ← 0 for 1 ≤ h ≤ H , v ∈ V and n ∈ N
5 foreach placement plan h = 1...H do
6 Try to use its other used nodes to host the VMs

that are originally placed by it on n if possible.

7 if 1 − (1 − AV B[1]) · (1 − AV B[2]) . . . (1 − AV B[H]) ≥ δ then
8 V P ← V B, V B ← ∅.

9 Return V P

of DSG is to assign nodes to VMs until all the VMs are

covered by the nodes without violating delay constraint. Since

we want to use least number of nodes to host VMs to satisfy

the availability, we gradually increase the amount of finding

placement plans. In what follows, we explain each step of the

heuristic algorithm.

In Step 1 of Algorithm 1, we first initialize a binary variable

V P [h][v][n] representing whether VM v ∈ V is hosted by

node n ∈ N under the plan h. After that, for placement plan

h, we call Algorithm 2 to place VMs on nodes in Step 3. The

purpose of Step 4 is to avoid different plans to have the same

placement result. But this will only happen when single node’s

free capacity is far greater than the VM demanding capacity.

That is, all the VMs can be placed on the same node and its

remaining free capacity is still large enough so that another

set of k VMs can be placed on it. In Step 5, we calculate

the availability of V P [h] (containing h placement plans). If

availability value of these h placement plans is no less than δ,

we call Algorithm 3 trying to return a partially VM placement

solution in order to further reduce the number of used nodes.

In Algorithm 3, for each node n ∈ N , we first clear all the

VMs resided on it. For each placement plan p, it tries to use

its other used nodes to host the VMs that are originally placed

by it on n. For simplicity, we apply a greedy approach: for

each one of used nodes by placement plan h, it tries to host

the VMs originally placed by it from n as many as possible.

After that, we calculate whether the whole availability still

satisfies δ. If so, we assign this partially placement solution

to V P , otherwise we return the original fully placement V P .

Next, we will explain the details of Algorithm 2, which is to

find single placement.

In Step 1 of Algorithm 2 we start with each vm ∈ V , assign

it to vx in Step 2. We use a queue Q to store already placed

VMs, and initially it is set empty. Besides, we also define

variable Pm[v][n] to indicate whether VM v ∈ V is hosted

by node n ∈ N corresponding to the placement plan starting

with VM vm. As long as Q’s count is less than k, Step 4-Step

9 are going to assign nodes to host unassigned VMs. Step

5 tries to find a node na with maximum availability whose

capacity should be at least c(vx). Moreover, if vx is placed



on na, it should not violate the delay constraint with already

hosted VMs. If it succeeds, in Step 7, the capacity of na is

reduced by cvx , the availability of na is changed to 1, and

vx is added to Q. The reason to change node’s availability is

that if some nodes have been used to host the existing VM(s),

then the availability for these nodes to host other (unassigned)

VMs is 1. So we need to change its “availability” after each

iteration of covering VM(s). If such node cannot be found in

Step 5, it indicates that not all the VMs are covered and we

regard this placement plan should “sharely” place uncovered

VMs with one of H−1 placement plans found in Algorithm 1.

The algorithm then breaks in Step 9. Following that, Step 10-

Step 14 search for an unsigned VM, which has a least delay

constraint to the already placed VMs, and assigns it to vx.

When Q’s count is equal to k, it indicates that all the VMs

have been hosted, which means we get a “complete” placement

plan. Finally, in Step 15, the algorithm returns a placement

plan with the biggest availability from k already determined

single placements.

The time complexity of Algorithm 2 can be calculated

like this: There are k VMs in total in Step 1, and Step

3 has also k iterations. Sorting algorithm for instance like

insertion sort in Step 4 takes O(N log(N)) time, and Step

5 has a complexity of O(N). Step 9-Step 13 consume at

most O(k2) time. Therefore, the whole complexity of Algo-

rithm 2 is O(k2(N log(N) + k2)). In Algorithm 3, Step 1
consumes O(N log(N)) time via insertion sort and Step 2-

8 consume O(N2H) time, leading to a whole complexity of

O(N(logN +NH)). Consequently, the whole time complex-

ity of Algorithm 1 is O(k2H(N log(N) + k2)), since it calls

at most H times of Algorithm 2.

VI. SIMULATION

A. Simulation Setup

We conduct simulations on a 16-node complete network3.

If we set c (VM demanding capacity) relatively too small,

then by placing as many VMs as possible on one node, we

may obtain a solution. If we set c relatively too big, then the

solution may not exist. Therefore, we let the node’s capacity

at most three times of the requested capacity of one single

VM, by which we want to challenge the algorithm to find

the solution. Consequently, the simulation parameters are set

like this: the node capacities are randomly distributed between

100 and 200 units, and the node availabilities are randomly

distributed among the set of {0.99, 0.999, 0.9995, 0.9999}.

The link delay dl ∈ [10, 20]. For each request r(k, c, V, T, δ),
k ∈ [3, 5], c ∈ [60, 130], each element in the delay

matrix T is between 15 and 25, and δ is in the set of

{0.999, 0.9999, 0.99999, 0.999999}. We randomly generate

100 requests for k = 3, 4, 5. We set H = 2 and 3.

We compare our exact INLP and heuristic DSG with two

heuristics, namely (1) Greedy Placement (GP) and (2) Random

3During simulations we found that the INLP for N ≥ 20 keeps on running
for at least one day and does not terminate with a feasible solution. Therefore,
we choose N = 16 for evaluation of both the INLP and heuristics.

Placement (RP). These 2 algorithms follow the similar routine

with Algorithm 1, except: (1) In Step 6, they directly return

the placement result if its availability is satisfied, instead

of checking partially placement solution, and (2) They call

different heuristics in Step 3 (different from Algorithm 2),

which we specify as follows:

• GP: It first selects a node with the greatest availability and

places as many VMs as possible on it under its storage

limit. It then selects the second largest availability node

and places remaining VMs as many as possible, which

should also satisfy the delay constraint with already

placed VMs. This procedure continues until all the VMs

are placed or all the nodes have been iterated.

• RP: It first randomly selects a node, and places as many

VMs as possible on it without exceeding its capacity.

Then it randomly selects the second node, and places

remaining VMs as many as possible without violating

node’s capacity constraint and the delay constraint with

already placed VMs. This procedure continues until all

the VMs are placed or all the nodes have been iterated.

The simulations are run on a desktop PC with 2.7 GHz and 8
GB memory. We use IBM ILOG CPLEX 12.6 to implement

the proposed INLP and C# to implement the heuristics.

B. Simulation Results

We first evaluate the performance of the algorithms in terms

of Acceptance Ratio (AR), which is defined as the number of

accepted requests over all the requests. Fig. 3 shows that the

exact INLP always achieves the highest AR. DSG has a close

performance with INLP, and it outperforms all the other two

heuristics. Besides, we notice that for the same algorithm, it

achieves higher AR value when H increases, since more VM

replicas are allowed to be placed for a higher H .

(a) H = 2 (b) H = 3

Fig. 3: Acceptance Ratio over 100 requests: (a) H = 2 (b)

H = 3.

Next, we compare the algorithms in terms of Average

Number of Used Nodes (ANUN). The ANUN is defined as the

total number of nodes consumed by all the accepted requests

divided by the number of accepted requests. To have a fair

comparison, we only consider the requests accepted by all four

algorithms. Considering that GP and RP have a low acceptance

ratio when H = 2, which means that the common accepted

requests are fewer, so we only present the ANUN result when



H = 3. We also omit the ANUN value for GP and RP when

k = 5, since the number of their common accepted requests

when k = 5 are very small. From Fig. 4, we see that the INLP

achieves the minimum value of ANUN, and our proposed DSG

obtains the second lowest ANUN value. RP obtains a lower

ANUN value than GP when k = 4, since it is regarded to place

more shared VMs. From above, we observe that even under

the constrained simulation setup, the exact INLP can always

accept most requests and consume least amount of nodes as

well, which validates its correctness.

Fig. 4: Average number of used nodes when H = 3, where

the value of GP and RP are omitted for k = 5.

Finally, Fig. 5 presents the total running time for 100
requests (in log scale). The INLP is significantly more time

consuming than all the other 3 heuristics. The DSG, on the

other hand, has a slightly higher running time than the other

two heuristics, but it pays off by having a higher AR as shown

in Figs. 3a and 3b, and lower ANUN shown in Fig. 4. In all,

we conclude that the exact INLP can be used as an optimal

solution when the computation speed is not a big concern.

However, as the problem size increases, its running time will

increase exponentially. On the contrary, our proposed DSG is

a good compromise between performance and running time,

and it is the preferred choice for when VM placement request

needs to be computed on-the-fly.

(a) H = 2 (b) H = 3

Fig. 5: Total running time over 100 requests: (a) H = 2 (b)

H = 3.

VII. CONCLUSION

In this paper, we have studied the RVMP problem, which

is to place at most H sets of k requested VMs on minimum

number of nodes, such that the VM placement availability is

no less than δ and each VM pair has a communication delay

no greater than the specified. We have proved that the RVMP

problem is NP-hard. To solve it, we have proposed an exact

INLP as well as an efficient heuristic. The simulation results

reveal that, our proposed heuristic can always achieve a better

performance in terms of acceptance ratio and average number

of used nodes than the other two heuristics, and it only requires

a slightly higher running time. On the other hand, the exact

INLP can always achieve the best performance, but its running

time is significantly larger than all the heuristics.
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