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Abstract—The dynamic composition of virtualized network
functions promises to ease the introduction of new services
in mobile networks, while reducing provisioning costs. This
approach, usually called Service Function Chaining, has been
the focus of several research efforts. However, current systems
rely on new tunneling protocols and on network infrastructure
changes. In this paper, we introduce CATENAE1, an efficient
Service Function Chaining system for mobile networks. Our
system deals with today’s network functions, including the ones
that perform changes to the packet’s header, without using any
tunneling protocol and without requiring network modifications.
Our approach is ready to be deployed in mobile networks,
integrates seamlessly with legacy network management systems
and introduces no overhead in the (virtual) network functions.

I. INTRODUCTION

Network operators deploy network functions to enforce their
policies and to provide additional services on top of plain
connectivity [11]. Content caching, NAT, TCP optimization,
video transcoding, HTTP header enrichment, are examples of
such services. Despite their ubiquitous usage [32], network
functions deployment is still performed by modifying the
network topology. That is, network functions are hard-wired
on the network traffic’s path. The inflexibility and complexity
of this approach is not acceptable when network functions
are implemented by means of software running in virtual
machines, as envisioned in the case of Network Function
Virtualization (NFV) [6]. In fact, hard-wiring would hinder the
benefits brought by the possibility of dynamically deploying
virtual network functions (VNFs) on general purpose servers.
Therefore, there is a growing interest on Service Function
Chaining (SFC) systems [13], which enable the flexible
deployment of network functions while guaranteeing their
configurable and dynamic chaining.

In general, a SFC system assigns a network flow entering
the managed network to a chain of functions, and steers the
flow through the functions of such chain, according to the
chain’s functions ordering [22]. A number of challenges arise
when addressing the design of a SFC system. First, assigning a
network flow to its chain requires network traffic classification,
an operation that is critical for the system scalability since it
should be performed for all the handled traffic. Second, traffic
forwarding should be performed according to the chain the
traffic belongs to, instead of following the typical forwarding

1Catenae is a Latin word that means “chains”.

approach, e.g., based on IP routing. Third, network flows
are usually bi-directional, that is, there is an upstream and a
downstream direction and a network function, e.g., a firewall,
may need to handle both of them. This requires to perform a
coordinated classification of upstream and downstream flows,
and the enforcement of symmetric paths for the two directions.
Finally, network functions may have dynamic and opaque
behaviors that modify the network traffic in unknown ways,
which may introduce a need for traffic reclassification or even
make the traffic unclassifiable [25].

To address these challenges, a number of SFC systems have
been already proposed ([25], [7], [2], [34], [26]). However,
they usually target green field or long term deployments.
In fact, they require a number of changes either in the
network hardware [25] or in the network functions [26],
or in both [7]. In other cases, they require modifications
to the network architecture [2]. Ready to deploy solutions,
which don’t require such changes, may instead not handle
all the aforementioned challenges. For example, some SFC
systems are unable to deal with opaque network functions
actions [25], [34]. Regardless of the adopted solutions, the
proposed systems address SFC in a general way, supporting
a broad range of deployment scenarios without considering
their specific properties and constraints. That is, they usually
adopt a “one-size-fits-all” approach. While we recognize the
intrinsic value of such a general solution, we also notice
that not all the deployment scenarios share the same set of
requirements, with the final result of SFC systems that provide
unnecessary features for the specific scenarios in which they
are deployed. At the same time, such systems usually fail
to satisfy a critical requirement of many today’s production
deployments, i.e., the SFC solution should introduce minimum
impact on the legacy infrastructures [3], [18].

In this paper, we argue that it is possible to simplify the
implementation of a SFC system, by carefully tailoring the
SFC solution to its specific deployment scenario. Our main
contribution is to demonstrate that this statement holds true for
the practical case of implementing SFC in mobile networks.
To this aim, we present the design and implementation
of CATENAE, a systems that supports SFC in today’s
mobile networks without introducing new protocols, without
changing the legacy infrastructure and without changing
network functions behavior. CATENAE leverages the unique
properties of a mobile network’s scenario to provide the
desired functions chaining features, including the handling978-1-4673-9486-4/16/$31.00 c© 2016 IEEE



Fig. 1. LTE network architecture.

of opaque network functions’ actions. Traffic forwarding is
performed by rewriting network packets’ header to steer
network flows from one function to the next one in the
chain. Rewriting rules are configured using SDN software
switches, which are anyway deployed at the servers hosting
VNFs [20]. Flow re-classification after a VNFs is done
by creating per-VNF VLAN topologies, using an approach
conceptually similar to [31]. By implementing a proof of
concept prototype, we demonstrate that CATENAE does
not add per-packet processing overheads, it integrates nicely
with legacy network management systems and it is fully
compatible with legacy network infrastructures and functions
while supporting millions of network flows.

The remainder of the paper is organized as follows. Sec.
II introduces background information and related work. In
Sec. III we present the CATENAE’s design while in Sec.
IV we evaluate a proof of concept implementation. Sec. V
discusses our design choices and their implications. In Sec.
VI we conclude the paper.

II. BACKGROUND AND RELATED WORK

This section presents relevant background information about
the mobile networks in which CATENAE can be deployed,
introduces the current work on SFC performed by standard
organizations like IETF, and provides an overview of the SFC
solutions proposed by the research community.

A. Mobile networks

Our work is focused on implementing SFC in Long-Term
Evolution (LTE) cellular networks (cf. Fig. 1). A LTE network
gives connectivity to a user equipment (UE) using a radio
network provided by a set of eNode-Bs (eNBs), which are
deployed by the operator over a geographic area. The eNBs
encapsulate UE’s network flows in a tunnel that, traversing
the Serving Gateway (SGW), brings user’s IP packets to the
Packet Data Network Gateway (PGW). The PGW is the UE’s
gateway towards IP networks, i.e., all the IP traffic coming
and going to the operator’s IP network (and to the Internet)
goes through the PGW. Also, the PGW is the point where the
UE’s IP address actually exists in the network. The Policy
and Charging Rules Function (PCRF) provides the PGW with
the policies to handle users’ traffic, e.g., it provides the QoS
configuration. After the PGW, user’s packets are sent to the

SGi-LAN, which is the place where the operator provides
additional services [33]. The SGi-LAN is usually an Ethernet
network, where network functions are deployed and wired
together either physically or logically (e.g., defining VLANs).
Network functions can be either transparent, i.e., they don’t
modify packets’ header, or opaque, i.e., they modify packets’
header. After the packets have been processed by the various
functions, they are finally delivered to an Internet Gateway
(IGW), that forwards them to the Internet.

We highlight a few points about LTE networks, which
will help in understanding the design decisions presented
in Sec. III. First, operators plan to replace legacy network
functions with virtualized ones, by deploying, in the SGi-
LAN, a relatively small number of servers (e.g., less than a
hundred) that will host VNFs. Thus, we expect a SFC system
will deal with VNFs in the number of thousands and that
these VNFs are connected to each other by a L2 network,
since the SGi-LAN is usually a traditional Ethernet network.
Second, the network traffic exposes properties which are
typical of LTE deployments. That is, the upstream flows (i.e.,
those generated at the users) are usually much smaller in size
than the downstream flows [12]. Also, the connections are
(almost) always initiated in the upstream direction. Finally,
since private IP addresses are usually in use on the UE-side,
network operators always deploy a NAT-like function [28].

B. SFC in standards

The IETF is the main standard organization that is dealing
with SFC, stating the SFC problem in RFC7498 [27], and
defining the architecture of an SFC system in RFC7665 [9]. In
the IETF architecture, a network function is relabeled Service
Function (SF). Thus, a Service Function Chain is an abstract
definition of an ordered set of SFs.

The incoming traffic, e.g., in the upstream direction, at the
edge of an SFC-enabled Domain, is classified by a Service
Classification Function, in order to perform traffic steering
through the correspondent chain. The Service Classification
Function adds an SFC-Encapsulation to the classified packets.
Notice that the architecture defines the encapsulation format
as independent from the network encapsulation protocol used
to interconnect the elements. This way, the SFC system does
not necessarily need an homogeneous network between the
chain’s functions, and can instead support more complex
scenarios that enable Service Providers to use different
technologies. The SFC-Encapsulation is used by another
component of the architecture: the Service Function Forwarder
(SFF). SFFs read the SFC-encapsulation to send network
packets to directly attached SFs, or to forward them to the
SFF to which the next function in the chain is attached.
For instance, a network switch may host a SFFs function
if extended to read the SFC-encapsulation format. Since
the RFC7665’s architecture assumes that SFs can deal with
the SFC-encapsulation format, SFC-unaware functions (e.g.,
legacy network functions) are supported by the usage of an
SFC-Proxy. An SFC-Proxy removes the SFC-encapsulation
at the ingress of an SFC-unaware area and add it again on



the egress of that area. An end-of-chain classifier has the
responsibility to remove the SFC-encapsulation when packets
exit the SFC-enabled Domain, and to classify the packets
belonging to the downstream traffic.
Network Service Header. While there are no standards de-
fined for the SFC-Encapsulation format, a currently discussed
proposal is the Network Service Header (NSH). The NSH is
composed by a Base Header (32 bits), a Service Path Header
(32 bits) and zero or more Context Headers. The Base Header
provides information about the Service Path Header and the
payload protocol. The Service Path Header is composed by a
Service Path ID to identify the chains and a Service Index
to provide location within the chain. Context Headers carry
opaque metadata and variable length encoded information.
The NSH header is located between the original packet/frame
and the overlay network encapsulation protocol, if any. In
fact, current NSH-based prototypes usually assume that an
overlay network, e.g., based on VxLAN, connects SFFs. The
original data unit, e.g., a L2 frame or a L3 packet, thus,
is encapsulated within different transport protocols such as
VLAN, VxLAN, GRE, Ethernet, etc. When a SF receives a
packet coming from a Service Chain, it will decrement the
Service Index header in order to update the location of the
packet within the chain. At the end of the chain, an end-of-
chain classifier will remove the NSH header and forward the
packet normally. NSH is transport independent because it can
be used with different encapsulation protocols. It provides
information about the chain each packet belongs to, through
the Service Path ID header, and the location within the chain,
through the Service Index Header. Context Headers make
possible to share network and service metadata (L2-L7) that
enable to re-classify the packets after a SF.

C. SFC in research

A number of proposals have been presented by the research
community, in order to address the challenges of SFC.

SIMPLE [25] provides SFC using an SDN network. It
implements inter-switch tunnels to aggregate the traffic with
common destinations, in order to reduce the total number
of forwarding rules in the SDN switches’ forwarding tables.
When such optimization is not required, hop-by-hop fine
granular forwarding rules are used instead. Traffic reclassifi-
cation, after an opaque network function, is performed using
a dynamic module which analyzes the similarities between
packets entering and exiting the network function. However,
such solution shows limited accuracy and it introduces
significant delays in the network flows.

To overcome such limitations, FlowTags [7] suggests the
modification of the network functions in order to provide
contextual information, in the form of a tag, which is added
to the processed network packets, in order to perform traffic
classification. The tags are defined by a centralized controller
and cached at the network functions, using an approach
similar to the handling of network packets at the controller
in OpenFlow networks [21]. Like in SIMPLE, packets

forwarding is performed writing appropriate forwarding rules
in the SDN switches along the path.

Using an SDN network to perform traffic steering is the
solution adopted also by StEERING [34]. In this case, the
authors leverage a smart encoding of the forwarding rules in a
multi-table switch’s pipeline, in order to scale the total number
of supported chains and network flows, still providing fine-
grained traffic steering. However, StEERING is not able to
reclassify the traffic in presence of opaque network functions.

Finally, SoftCell [14] presents a solution that takes into
account the deployment scenario’s properties to simplify the
implementation of SFC in mobile networks. To the best of
our knowledge, and putting aside CATENAE, it is the only
proposal that explores such an approach. To be deployed,
SoftCell requires a network of SDN switches and a modi-
fication of the mobile network’s architecture. For instance,
SoftCell removes SGW and PGW functions, and therefore
removes LTE’s mobility management introducing a custom
solution instead. Traffic classification is performed at switches
co-located with the eNBs for the upstream direction, while
classification for downstream traffic is performed leveraging
information encoded in the source IP address/transport port
of outgoing packets. In fact, traffic is assumed to be always
initiated in the upstream direction, thus, any downstream
packet will carry in the destination IP address/transport port
the original upstream flow’s encoded value.

III. DESIGN

This section presents our design choices, the CATENAE’s
architecture, the traffic steering method and gives an overview
on possible deployment options in LTE infrastructures.

The main objective of CATENAE’s design is to provide
SFC while minimizing the impact on current infrastructures.
To this aim, our design decisions are taken in the light of the
properties characterizing the deployment scenario, i.e., the
LTE network. We make a number of observations that motivate
our design decisions. First, the main and most important
observation is that network functions are connected using an
Ethernet network, while user traffic is composed of IP packets,
since the tunnel that brings the traffic from eNBs to the PGW
only transports IP packets. Thus, the user traffic is agnostic
to the L2 packets header and therefore we can manipulate
the L2 header to perform traffic forwarding according to our
needs. Second, the upstream flow is always started before
the downstream flow, and upstream traffic’s throughput is
usually orders of magnitude smaller than downstream one.
Because of these two observations we can perform traffic
classification in the upstream direction using a software
classifier. In fact, while the classifier is traversed by all the
user traffic, it could be still able to scale to handle millions of
flows, if these flows contribute a relatively small aggregated
throughput. A third observation is that there is always a
NAT function deployed in a chain [32]. This allows us to
perform traffic classification in the downstream direction
without adding a dedicated end-of-chain classifier. In fact, we
mandate the deployment of NAT functions as the last chain’s



Fig. 2. CATENAE’s architecture.

functions, which is anyway already a common practice. A NAT
function performs a mapping between upstream traffic and
corresponding downstream traffic, in order to apply address
translation. When an upstream’s packet traverses the NAT,
its source IP address is rewritten with a NAT’s routable IP
address. Thus, any corresponding downstream traffic’s packet
will be delivered to the NAT, having the destination IP address
set to the NAT’s routable IP address. Since the NAT function
is first hit by the already classified upstream traffic, the NAT
will associate any downstream traffic to its upstream flow [14].
The remainder of this section presents the way we capture
these observations in the designed architecture and in the
corresponding traffic steering method.

A. Architecture

CATENAE’s architecture (cf. Fig. 2) is composed of 4
elements: the classifier, which performs traffic classification on
the packets entering the SGi-LAN, in the upstream direction;
the VNFs’ switches, which are deployed at the servers and
connect VNFs with the SGi-LAN; the SGi-LAN itself, i.e., an
Ethernet network, that connects classifier and VNFs’ switches
with each other; the SFC Controller, that configures classifier
and VNFs’ switches in a coordinated way to enforce function
chains. Both the classifier and the VNF’s switches are SDN
software switches (e.g., they implement OpenFlow), while
the SGi-LAN implements a typical MAC learning algorithm.
Thus, the SFC Controller does not change the SGi-LAN
network’s operations, but uses it as a mere transport network
between VNFs located on the servers.

The classifier handles all the uplink traffic coming from
the PGW. This design decision may rise scalability concerns,
since the classifier is a software switch. However, the classifier
handles only uplink flows, which are contributing just a
fraction of the overall load (cf. Sec. IV). Thus, CATENAE
enforces symmetric paths for upstream and downstream flows,
in respect to the network functions, but only upstream flows
are processed by the classifier. The classification for the
downstream traffic is instead performed by the NAT functions,
which are always a chain’s last function.

The SFC Controller offers a function chains configuration
interface, which could be connected to e.g., the PCRF of
the LTE architecture. Upon reception of a chain installation
request, the SFC controller implements the chain by installing
forwarding entries at all the involved switches. Function
chains are described by a list of flow identifiers (FIDs) and

a list of functions. Each FID includes one or more of the
following fields: IP addresses, transport ports and the IP
header’s DSCP field. Also, while the FID always defines the
upstream direction of a flow, it also identifies the downstream
direction as well. In fact, the downstream direction of a
flow can be identified by switching source IP addresses and
transport ports values with destination ones. The functions’ list
contains the chain of network functions for the flow identified
by the FIDs, specified in the order in which the upstream
flow should traverse them. The last function in the list is
the chain’s exit point, i.e., a NAT. Each network function is
further described by a network location. Network locations
can be both provided with a static configuration or the SFC
system can perform a lookup for the location using a different
interface, e.g., connected to a VMs management system.

B. Traffic steering

Traffic steering is the process of defining the network paths
for network flows, according to an explicit policy. CATENAE
performs traffic steering configuring each of the managed
switches (including the classifier) to classify an incoming
packet, retrieve the chain it belongs to and forward it to the
chain’s next function. Since Ethernet networks perform packet
switching based on Ethernet destination addresses, CATENAE
performs packets delivery to a given function, over the SGi-
LAN, configuring the switches to rewrite Ethernet addresses.
In the remainder of this paragraph we describe the operations
for upstream and downstream cases.
Upstream. Upstream flows are first handled at the classifier,
which uses the FIDs to classify packets and send them to the
respective first chain’s function. If the function is transparent,
the function’s switch delivers the packet directly to the
function and re-classifies it using the FIDs, after the function’s
processing. When a function is opaque, packets’ header values
change, making the system unable to reclassify flows using
the FIDs. Also, all the functions coming after an opaque
one are handled as opaque functions by the system. In fact,
once a packet’s header has been changed, the original FIDs
don’t match the flows anymore. In these cases, classification is
achieved creating local virtual L2 networks between a function
and its switch. Since network functions typically separate
flows received from different L2 networks, a packet will
not change its network after the function. Hence, a different
(virtual) L2 network per each chain traversing the function
helps in associating a packet with its chain. That is, packets
belonging to a given chain are tagged with a VLAN tag,
which is maintained unchanged when the packet traverses the
function2. The VLAN tag is removed before sending a packet
back to the SGi-LAN, since it is meaningful only on the
switch-function link. However, the classification information
is required also at the next function in the chain, thus, this

2In today’s network functions this feature is usually called VLAN separation.
The tag is maintained also for the new flows generated as a consequence of
the reception of tagged packets. Further information can be found in network
functions’ manuals, e.g., https://techlib.barracuda.com/bwf/deplyvlan.



Fig. 3. Forwarding tables configuration example, for the steering of a flow with FID “src IP=10.0.0.1”, which traverses the function chain F1, F2, F3.

information is encoded in the packets’ source Ethernet address.
Such an address is generated to be unique for each couple
chain/function, and it is generated when the next chain’s
function is attached to a different software switch. In fact,
for functions attached to the same switch, it is enough to
read the VLAN tag value. When packets are received at the
next function’s switches, instead, classification is performed
looking at the source Ethernet address.
Downstream. Downstream flows are classified at the NATs
deployed as chains’ last functions. The function chain is
then traversed in reverse order. CATENAE operations are
again dependent on the type of function the packets traverse.
Until there are opaque functions traversed by the downstream
flow, the function’s switch performs flows classification
using VLANs. As in the upstream case, when required,
the classification information is encoded in a MAC address
value, which this time is written in the packet’s Ethernet
destination. Recall that this MAC address was generated
already for each chain and function during the handling of
the upstream flow. Hence, the location of the generated address
was already learned by the SGi-LAN. After the last opaque
function (i.e., the first one in the perspective of the upstream
flow) has processed the downstream flow, the original FID
is used to perform packets classification3. Here, we assume
an opaque function restores the original packet header for
the downstream flow. E.g., for downstream flows a NAT
restores the original upstream flow headers, with switched
source/destination addresses and transport ports. Thus, the
downstream flow coming from an opaque function can be
classified at a transparent function’s switch that receives it,
using the FID.

Figure 3 shows a chain example and the switches’s
forwarding entries generated to implement such chain for

3Actually, the FID is modified to switch source address and transport ports
with the destination ones, to match the downstream flow.

a network flow. The entries are expressed in an OpenFlow-
like format, with a match part, which identifies the flow, and
an action part, which specifies the actions that should be
applied to the matched packets. A few details can be captured
looking at these entries. First, notice that after a function, the
packet’s Ethernet source is rewritten to the function’s MAC
address. This rewriting is required to guarantee the correct
SGi-LAN’s MAC learning. Second, when flows are received
from an opaque function, the flow’s direction is detected
looking at the destination MAC address. We assume that any
opaque function is configured to always use IGW and PGW
as forwarding gateways for the upstream and downstream
directions, respectively [2]. Thus, if the value is the IGW’s
MAC address, then the direction is upstream; if the value is
the PGW’s MAC address, the direction is downstream.

C. Deployment

CATENAE can be deployed in legacy SGi-LANs. The
deployment process requires the configuration of SDN soft-
ware switches in the servers connected to the SGi-LAN, the
deployment of the SFC controller and the redirection of the
user traffic to the CATENAE’s classifier. While the former
activities are a matter of software configuration on the servers,
the redirection of the traffic to the classifier is the actual
hook of the SFC system in the SGi-LAN. Such operation is
as easy as changing the default IP gateway address in the
PGW’s configuration. In fact, the classifier is implemented
as a software switch running on a general purpose server
connected to the SGi-LAN.

IV. EVALUATION

This section describes a CATENAE’s proof of concept
implementation and its evaluation.
Prototype. We implemented the SFC Controller on top of
Ryu4. The core traffic steering algorithm is implemented in

4http://osrg.github.io/ryu



less than 100 lines of python code. We use OpenvSwitch
(OVS) as VNFs’ switches, and OpenFlow as protocol for
the switches configuration. We emulate VNFs running either
click [17] or node.js in Linux containers. In all the tests, the
SFC Controller runs on a single core of an Intel i5-2540M
CPU @ 2.60GHz, using the Python 2.7.3 interpreter shipped
with the Ubuntu 12.04.5 LTS distribution. OVS (v. 2.3) and
VNFs instances run on servers equipped with an Intel CPU
E31220 (4 cores @ 3.10GHz).

Number of chains. CATENAE generates new MAC addresses
to support opaque functions. It is unlikely to define a number
of chains that could consume the entire MAC address space,
however, there is an actual limitation on the number of distinct
MAC addresses one can use in an Ethernet network. In
fact, Ethernet switches have limited memory to store the
associations (address ↔ switch’s port) generated during the
MAC learning process [29]. For instance, consider chains that
include 4 opaque functions on average (excluding the NAT
function at the end, for which no MAC address is generated),
and assume that a switch can learn 100k associations (e.g.,
this is the case of the Broadcom Trident switching chip [29]).
In this case, the system could support 25k chains (actually
slightly less, considering that some MAC addresses are
required for, e.g., physical servers and VNFs). Also, each
opaque function can be traversed by 4095 chains at most,
since VLAN tags are used to correlate function’s entering
and exiting flows. While this is a strict limitation, one should
consider our initial assumption of supporting VNFs in the
number of thousands and notice that the same chain may be
applied to several network flows. In fact, operators typically
define a single chain for a group of users (e.g., premium
users), or services (e.g., web traffic). Furthermore, the actual
total number of possible distinct chains is perhaps limited
to only few thousands in practice. In fact, consider the case
in which a user can pick her services out of a bucket of
10 possible services. If the operator will define a predefined
order for the application of such services, such as, anomaly
detection is applied before the web proxy, only 1024 distinct
chains could be defined (i.e., 210 chains, since each function
can be either included or not). Finally, notice that there
is no such limitation when dealing only with transparent
functions. In such cases, CATENAE does not need to generate
any additional MAC address. Moreover, if multiple opaque
functions are connected to the same switch, no additional
MAC addresses are generated. With K representing the
average number of chain’s functions attached to the same
switch, and recalling that after the first opaque function all
the remaining chain’s functions are handled as opaque ones,
in Fig. 4 we show the number of required MAC address for
a chain’s implementation. Notice that an early positioning of
an opaque function requires more MAC addresses, while the
co-location of functions reduces such requirement.

Number of flows. The total number of flows supported by
the system defines the number of supported users and how
granular their policies can be. CATENAE assigns flows to
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Fig. 4. Number of required MAC address for the implementation of a chain,
when varying the number of chain’s functions and the position of first opaque
function in the chain, for different values of K. Where K is the average
number of chain’s functions attached to the same switch.

chains performing classification at the SDN switches. The
switch’s entries are installed in advance, when a chain is first
configured, thus, a switch has to host the entries for all the
flows that may traverse it. The number of forwarding entries
required to configure a flow in CATENAE scales linearly with
the number of functions contained in the chain assigned to the
flow. In particular, transparent and opaque functions require
2 and 4 entries each, respectively, per flow. Since we rely on
software switches, we can easily scale to millions of entries
per switch. Assuming that an entry requires 50B of memory
(including all the header values [23] and rewriting actions),
storing 10 million entries requires 500MB of RAM. Such
numbers should be sufficient to support millions of users,
even considering several policies per user, e.g., distinct chains
per users and per user’s flows carrying web, voice, video, etc.
Configuration time. The system configuration time depends
on the number of entries the SFC controller has to install.
The number of entries scales with the product of the number
of flows and number of functions per flow’s chain. Our SFC
controller prototype is developed in python and can send only
about 2200 entry configuration messages per second, limiting
the flow configuration performance. Figure 5 shows the rate of
flow configurations per second, for chains of lengths between
2 and 5 functions, when functions are either all transparent
(but the last one, which is anyway a NAT) or all opaque. In
order to confirm that this poor performance is a limitation
of the Ryu-based implementation, we re-implemented the
core algorithm of the SFC controller using the faster Beacon
controller [5]. This second implementation achieved, on the
same hardware, a flow configuration rate of more than 16k
flows per second, in case of chains with 5 opaque functions.
Flow forwarding delays. Forwarding entries in CATENAE
are installed beforehand, thus, no delay is introduced by the
traffic steering method, even when new flows are initiated.
Notice that alternative solutions (e.g., [7], [14]) may instead
introduce delays on (few) flows’ packets.
Overheads. It is well known that tunneling protocols increase
the cost of processing packets at VNFs’ switches [16] and
VNFs themselves [7]. Furthermore, it is expected that the
average packet size in mobile networks will decrease to
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Fig. 5. SFC Controller throughput in configured flows/s (bars) and generated
switch’s entries/s (lines).

384B [30] in future. For some tunneling technologies, such
as VXLAN, this would mean the introduction of more than
14% overhead in terms of on wire transferred bytes (54B are
required for VXLAN encapsulation over IPv4). CATENAE
does not use any extra header in the packets, avoiding
these overheads which are common to other solutions (e.g.,
NSH [26]).
Data plane scalability. The main CATENAE’s bottleneck
for the system’s data plane scalability is the classifier. In
fact, the servers running SDN switches and VNFs, which
also handle data plane traffic, could be increased in number
to scale with the offered load. Scaling the classifier, instead,
would require the introduction of additional components, such
as load balancers, between the PGW and the classifier. Such
components would increase the deployment complexity of
CATENAE and work against our aim of minimizing the
impact on the legacy infrastructure. Therefore, we built a
trace-driven simulator for the classifier, in order to analyze
its performance under different traffic loads. We validated
our simulator by comparing the reported performance with
the one measured with our prototype, when running a small
scale experiment with synthetic traffic. The validation test
shows that for relevant performance metrics, such as the
system’s throughput, the simulator reports values with a
general difference below 1% from those measured on the
real system.

Lacking access to real traffic traces, we extracted relevant
traffic properties from [14], [12] and designed a flow-level
trace generator to feed our simulator. The generated traffic
trace reproduces the distributions of flow sizes and rates,
for the network traffic seen at the PGW, as extracted from
[12]. Fixing these parameters, we derive corresponding flow
durations. As a correctness check, we verify that the CDFs of
the generated flow durations as well as the flow’s correlation
coefficients between size, rate and duration match the ones
reported in [12]. The dynamics of the network flows, e.g.,
flows arrival rate and number of concurrent flows per second,
are extracted from [14], which provides base station’s statistics
in terms of average active users and data connections created
per second. As a last check, we compared the numbers of
concurrent flows reported in [12] with the numbers counted in
our trace. Here, notice that the numbers of concurrent flows
in our trace depend both from the generated flow durations,

computed earlier, and the flows dynamics reported in [14].
We fed our simulator with the generated traffic trace, to

verify if the classifier is able to handle the offered load with
zero packet loss. Notice that, in the scenario presented in
[12], the PGW is connected to 22 base stations and handles
an aggregated traffic of less than 1 Gbit/s. Considering an
average packet size of 512B [30], the system has to handle
∼0.23 million packets per second (Mpps). We configured the
simulator to cap the software switch forwarding performance
at 1 Mpps. This is a very conservative assumption, since
current software switches can forward several Mpps [24], [10].
With this configuration, we simulated 30 minutes of system
operations, generating 4.6M flows, in which the classifier
achieved zero packet loss.

Notice that a 10x increase in load is expected in 2014-
2019 [4], which would correspond to an aggregated throughput
of ∼10 Gbit/s in our simulation. Thus, we performed new
simulations to understand the limits of our system. scaling
the offered load in two directions: varying the number of
base stations connected to the PGW and the per-flow load.
The number of base stations affects the rate of new flows
created per second as well as their total number (with 40 base
stations, we create up to 8.6M flows). This may impact the
distribution of the system load peaks. Our test results show
that the classifier can handle up to 29Gbit/s of aggregated
PGW’s throughput: a value three-times bigger than the 2019’s
forecast. In fact, the classifier handles only the upstream flows,
which in the worst case account for the 15% of the overall
throughput, in our trace. I.e., 4.35 Gbit/s, which is about 1
Mpps if the packet size is 512B.

V. DISCUSSION

This section discusses the implication of our design choices
and provides a few consideration stemming out from our
evaluation results.
Legacy infrastructures. CATENAE matches our original
aim of minimizing the impact on legacy infrastructures in
several ways. First, it can be seamlessly deployed in the
LTE architecture, requiring only the installation of software
components in the general purpose server attached to the SGi-
LAN (cf. Sec. III), and without requiring any architectural
change. This is a unique feature when compared to the related
work presented earlier. Second, it does not use any tunneling
protocol, be it a L2 tunneling protocol, such as VLAN, or a
higher level ones, such as VxLAN. This provides a number
of advantages and it is another clear distinction point in
comparison with the previously mentioned related work. When
considering tunneling protocols at the higher network layers,
the introduced processing overheads in the servers may be
high, unless hardware offloading mechanisms are implemented
in the network interface cards (NICs). While it is fair to expect
that the most successful protocols, e.g., VxLAN, will be soon
offloaded by the majority of the NICs, this is still not the
case [8]. Thus, we expect CATENAE will be more efficient
in using the server’s processing power in the next few years,



when servers will be facing a limited tunneling offloading
support. In the case of protocols such as VLAN, for which the
offloading is already well established in the NICs, CATENAE
provides perhaps an even bigger advantage. In fact, VLAN-
like protocols are extensively used to perform logical network
separation by a number of systems. In effect, as it became
clear in several discussions with network operators, using,
e.g., VLANs, is in most of the cases not an option, since
it would require very complex, time-consuming and error-
prone integrations with the systems that deal with the VLANs
management. With CATENAE the coordination with such
systems is not required, in fact CATENAE operations deal
with VLANs only on the link between software switches and
VNFs. Third, while other solutions require modifications to
the network functions [7], [26], CATENAE supports current
network functions with no modifications, leveraging features
that are already extensively used, such as VLAN separation.
That is, VNFs are considered as black boxes, helping in
decoupling the deployment and configuration of network
functions from their composition in a chain [15]. Finally,
CATENAE nicely integrates with systems that provide the
VNFs deployment, such as OpenStack, which in turn can
perform, e.g., optimal VNFs placement.

Hardware network functions. While CATENAE seamlessly
supports software legacy functions, hardware network func-
tions can be only supported if directly attached to a SDN
switch. Hence, two options are actually viable. In a first
case, the hardware function may be attached back-to-back
to a server running a software switch. However, the network
function may overload the software switch, which, unlike
the case of the classifier, should handle both upstream and
downstream flows. An alternative solution is to deploy a
hardware SDN switch. In this second option, a limitation
could be the size of the hardware switch forwarding table. To
address this issue, architectures like the one presented in [1]
may help. Anyway, please notice that this is a common issue
for all the solutions presented in Sec. II, furthermore, unlike
other solutions that modify L3 headers [19], CATENAE only
rewrites MAC addresses, which is an operation commonly
supported in hardware switches.

Classification. In our proof of concept prototype, we imple-
mented the classifier using a software OpenFlow switch. Such
a decision may limit the ability of CATENAE to perform
complex classification functions that may require Deep Packet
Inspection (DPI). However, please notice that CATENAE
design does not limit the options for the implementation of
a more complex classifier, provided that it exposes an SDN-
like interface for configuring the MAC address rewriting
operations. In effect, in the evaluation of Sec. IV, we
performed our data plane scalability simulations using a
particularly low forwarding capacity for the classifier, with
the purpose of evaluating the system in the case in which
the classifier is performing complex operations. In fact, the 1
Mpps throughput cap is better suited for a complex network
function [20], while a software switch is usually capable of

forwarding packets in the order of 10 Mpps [10].
Metadata. CATENAE does not support the delivery of
metadata to the network functions. For instance, a user’s
wireless link quality information has to be delivered to the
network functions that may need it, e.g., transcoders, using out-
of-bound channels. Other solutions support metadata delivery
requiring modifications to the VNFs [26], [7].

VI. CONCLUSION

We presented CATENAE, an SFC system for the SGi-
LAN. CATENAE can be deployed on legacy infrastructures,
introducing effective SFC without paying the overheads of
additional packet header fields, but still scaling to provide
fine grained policies for millions of network flows.
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